2,170 research outputs found

    Epitaxial growth of Cu on Cu(001): experiments and simulations

    Full text link
    A quantitative comparison between experimental and Monte Carlo simulation results for the epitaxial growth of Cu/Cu(001) in the submonolayer regime is presented. The simulations take into account a complete set of hopping processes whose activation energies are derived from semi-empirical calculations using the embedded-atom method. The island separation is measured as a function of the incoming flux and the temperature. A good quantitative agreement between the experiment and simulation is found for the island separation, the activation energies for the dominant processes, and the exponents that characterize the growth. The simulation results are then analyzed at lower coverages, which are not accessible experimentally, providing good agreement with theoretical predictions as well.Comment: Latex document. 7 pages. 3 embedded figures in separate PS files. One bbl fil

    Observations and predictions at CesrTA, and outlook for ILC

    Full text link
    In this paper, we will describe some of the recent experimental measurements [1, 2, 3] performed at CESRTA [4], and the supporting simulations, which probe the interaction of the electron cloud with the stored beam. These experiments have been done over a wide range of beam energies, emittances, bunch currents, and fill patterns, to gather sufficient information to be able to fully characterize the beam-electron-cloud interaction and validate the simulation programs. The range of beam conditions is chosen to be as close as possible to those of the ILC damping ring, so that the validated simulation programs can be used to predict the performance of these rings with regard to electroncloud- related phenomena. Using the new simulation code Synrad3D to simulate the synchrotron radiation environment, a vacuum chamber design has been developed for the ILC damping ring which achieves the required level of photoelectron suppression. To determine the expected electron cloud density in the ring, EC buildup simulations have been done based on the simulated radiation environment and on the expected performance of the ILC damping ring chamber mitigation prescriptions. The expected density has been compared with analytical estimates of the instability threshold, to verify that the ILC damping ring vacuum chamber design is adequate to suppress the electron cloud single-bunch head-tail instability.Comment: 11 pages, contribution to the Joint INFN-CERN-EuCARD-AccNet Workshop on Electron-Cloud Effects: ECLOUD'12; 5-9 Jun 2012, La Biodola, Isola d'Elba, Ital

    Vortex State of Tl2_2Ba2_2CuO6+δ_{6+\delta} via 205^{205}Tl NMR at 2 Tesla

    Full text link
    We report a 205^{205}Tl NMR study of vortex state for an aligned polycrystalline sample of an overdoped high-TcT_c superconductor Tl2_2Ba2_2CuO6+δ_{6+\delta} (TcT_{c}\sim85 K) with magnetic field 2 T along the c axis. We observed an imperfect vortex lattice, so-called Bragg glass at TT=5 K, coexistence of vortex solid with liquid between 10 and 60 K, and vortex melting between 65 and 85 K. No evidence for local antiferromagnetic ordering at vortex cores was found for our sample.Comment: 4 pages with 5 figure

    Effective Lagrangian for strongly coupled domain wall fermions

    Get PDF
    We derive the effective Lagrangian for mesons in lattice gauge theory with domain-wall fermions in the strong-coupling and large-N_c limits. We use the formalism of supergroups to deal with the Pauli-Villars fields, needed to regulate the contributions of the heavy fermions. We calculate the spectrum of pseudo-Goldstone bosons and show that domain wall fermions are doubled and massive in this regime. Since we take the extent and lattice spacing of the fifth dimension to infinity and zero respectively, our conclusions apply also to overlap fermions.Comment: 26 pp. RevTeX and 3 figures; corrected error in symmetry breaking scheme and added comments to discussio

    Dynamic nuclear polarization and spin-diffusion in non-conducting solids

    Full text link
    There has been much renewed interest in dynamic nuclear polarization (DNP), particularly in the context of solid state biomolecular NMR and more recently dissolution DNP techniques for liquids. This paper reviews the role of spin diffusion in polarizing nuclear spins and discusses the role of the spin diffusion barrier, before going on to discuss some recent results.Comment: submitted to Applied Magnetic Resonance. The article should appear in a special issue that is being published in connection with the DNP Symposium help in Nottingham in August 200

    The phase diagram of Yang-Mills theory with a compact extra dimension

    Get PDF
    We present a non-perturbative study of the phase diagram of SU(2) Yang-Mills theory in a five-dimensional spacetime with a compact extra dimension. The non-renormalizable theory is regularized on an anisotropic lattice and investigated through numerical simulations in a regime characterized by a hierarchy between the scale of low-energy physics, the inverse compactification radius, and the cutoff scale. We map out the structure of the phase diagram and the pattern of lines corresponding to fixed values of the ratio between the mass of the fifth component of the gauge field and the non-perturbative mass gap of the four-dimensional modes. We discuss different limits of the model, and comment on the implications of our findings.Comment: 17 pages, 9 figure

    Cereals

    Get PDF
    The tropical cereal crops such as maize, rice, sorghum, and millets, are the staple foods of billions of people in developing countries. Their sustainable improvement is crucial to achieving food security in the face of climate change in the growing demand for food. The need to conserve the diversity of these crops and their wild relatives is therefore particularly important. This chapter outlines the diversity within each crop pool and summarizes their state of conservation ex situ. Many of the 1,750+ genebanks around the world contain accessions of at least one of these crops and their wild relatives, and altogether there are thousands of accessions of each of them. A significant proportion of this germplasm is freely distributed to scientists and breeders around the world with the Standard Material Transfer Agreement of the International Treaty on Plant Genetic Resources for Food and Agriculture. However, this use can be effective only if the germplasm and associated passport, characterization, and evaluation data are readily available. As additional insurance against loss of diversity, many accessions are now also conserved in the Svalbard Global Seed Vault in Norwa

    Property (T) and rigidity for actions on Banach spaces

    Full text link
    We study property (T) and the fixed point property for actions on LpL^p and other Banach spaces. We show that property (T) holds when L2L^2 is replaced by LpL^p (and even a subspace/quotient of LpL^p), and that in fact it is independent of 1p<1\leq p<\infty. We show that the fixed point property for LpL^p follows from property (T) when 1. For simple Lie groups and their lattices, we prove that the fixed point property for LpL^p holds for any 1<p<1< p<\infty if and only if the rank is at least two. Finally, we obtain a superrigidity result for actions of irreducible lattices in products of general groups on superreflexive Banach spaces.Comment: Many minor improvement

    Non-perturbative Renormalisation of Domain Wall Fermions: Quark Bilinears

    Full text link
    We find the renormalisation coefficients of the quark field and the flavour non-singlet fermion bilinear operators for the domain wall fermion action, in the regularisation independent (RI) renormalisation scheme. Our results are from a quenched simulation, on a 16^3x32 lattice, with beta=6.0 and an extent in the fifth dimension of 16. We also discuss the expected effects of the residual chiral symmetry breaking inherent in a domain wall fermion simulation with a finite fifth dimension, and study the evidence for both explicit and spontaneous chiral symmetry breaking effects in our numerical results. We find that the relations between different renormalisation factors predicted by chiral symmetry are, to a good approximation, satisfied by our results and that systematic effects due to the (low energy) spontaneous chiral symmetry breaking and zero-modes can be controlled. Our results are compared against the perturbative predictions for both their absolute value and renormalisation scale dependence.Comment: 53 pages, 21 figures, revte
    corecore