485 research outputs found

    Continuous Magnetophoretic Separation of Blood Cells from Plasma at the Microscale

    Full text link
    We present a method for the direct and continuous separation of red and white blood cells from plasma at the microscale. The method is implemented in a microfluidic system with magnetic functionality. The fluidic structure within the microsystem consists of an inlet and a single microfluidic channel with multiple outlets. The magnetic functionality is provided by an array of integrated soft-magnetic elements that are embedded transverse and adjacent to the microchannel. The elements are magnetized using an external field, and once magnetized they produce a magnetic force on blood cells as they flow through the microchannel. In whole blood, white blood cells (WBCs) behave as diamagnetic microparticles, while red blood cells (RBCs) exhibit diamagnetic or paramagnetic behavior depending on the oxygenation of their hemoglobin. We study the motion of blood cells through the microchannel using a mathematical model that takes into account the magnetic, fluidic and gravitational forces on the cells. We use the model to study blood cell separation, and our analysis indicates that the microsystem is capable of separating WBC-rich plasma, deoxygenated RBC-rich plasma and cell-depleted plasma into respective outlets.Comment: Submitted to Journal of Applied Physic

    Analysis and design of a slotless tubular permanent magnet actuator for high acceleration applications

    Get PDF
    This paper presents the design of a linear actuator for high acceleration applications. In the analysis, a slotless tubular permanent magnet actuator is modeled by means of semianalytical field solutions. Several slotless topologies are modeled and compared to achieve the highest acceleration. A design has been proposed and built, and measurements are conducted to verify the model

    Three-year observations of halocarbons at the Nepal Climate Observatory at Pyramid (NCO-P, 5079 m a.s.l.) on the Himalayan range

    Get PDF
    A monitoring programme for halogenated climate-altering gases has been established in the frame of the SHARE EV-K<sup>2</sup>-CNR project at the Nepal Climate Laboratory – Pyramid in the Himalayan range at the altitude of 5079 m a.s.l. The site is very well located to provide important insights on changes in atmospheric composition in a region that is of great significance for emissions of both anthropogenic and biogenic halogenated compounds. Measurements are performed since March 2006, with grab samples collected on a weekly basis. The first three years of data have been analysed. After the identification of the atmospheric background values for fourteen halocarbons, the frequency of occurrence of pollution events have been compared with the same kind of analysis for data collected at other global background stations. The analysis showed the fully halogenated species, whose production and consumption are regulated under the Montreal Protocol, show a significant occurrence of "above the baseline" values, as a consequence of their current use in the developing countries surrounding the region, meanwhile the hydrogenated gases, more recently introduced into the market, show less frequent spikes. <br><br> Atmospheric concentration trends have been calculated as well, and they showed a fast increase, ranging from 5.7 to 12.6%, of all the hydrogenated species, and a clear decrease of methyl chloroform (−17.7%). The comparison with time series from other stations has also allowed to derive Meridional gradients, which are absent for long living well mixed species, while for the more reactive species, the gradient increases inversely with respect to their atmospheric lifetime. The effect of long range transport and of local events on the atmospheric composition at the station has been analysed as well, allowing the identification of relevant source regions the Northern half of the Indian sub-continent. Also, at finer spatial scales, a smaller, local contribution of forest fires from the Khumbu valley has been detected
    corecore