20 research outputs found

    Coastal oceanography and sedimentology in New Zealand, 1967-91.

    Get PDF
    This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years

    Arrestin-independent internalization and recycling of the urotensin receptor contribute to long-lasting urotensin II-mediated vasoconstriction

    No full text
    Urotensin II (UII), which acts on the G protein-coupled urotensin (UT) receptor, elicits long-lasting vasoconstriction. The role of UT receptor internalization and intracellular trafficking in vasoconstriction has yet not been analyzed. Therefore, UII-mediated contractile responses of aortic ring preparations in wire myography and rat UT (rUT) receptor internalization and intracellular trafficking in binding and imaging analyses were compared. UII elicited a concentration-dependent vasoconstriction of rat aorta (-log EC50, mol/L:9.0+/-0.1). A second application of UII after 30 minutes elicited a reduced contraction (36+/-4% of the initial response), but when applied after 60 minutes elicited a full contraction. In internalization experiments with radioactive labeled VII ((125)I-UII), approximately 70% of rUT receptors expressed on the cell surface of human embryonic kidney 293 cells were sequestered within 30 minutes (half life [t(h)]: 5.6+/-0.2 minutes), but recycled quantitatively within 60 minutes (t(h) 31.9+/-2.6 minutes). UII-bound rUT receptors were sorted to early and recycling endosomes, as evidenced by colocalization of rUT receptors with the early endosomal antigen and the transferrin receptor. Real-time imaging with a newly developed fluorescent UII (Cy3-UII) revealed that rUT receptors recruited arrestin3 green fluorescent protein to the plasma membrane. Arrestin3 was not required for the endocytosis of the rUT receptor, however, as internalization of Cy3-UII was not altered in mouse embryonic fibroblasts lacking endogenous arrestin2/arrestin3 expression. The data demonstrate that the rUT receptor internalizes arrestin independently and recycles quantitatively. The continuous externalization of rUT receptors provides the basis for repetitive and lasting UII-mediated vasoconstriction

    Total Synthesis of the Highly <i>N-</i>Methylated Acetylene-Containing Anticancer Peptide Jahanyne

    No full text
    The first total synthesis of the highly <i>N-</i>methylated acetylene-containing lipopeptide jahanyne, an apoptosis-inducing natural product from marine cyanobacteria, is reported. A late-stage solution-phase coupling enabled introduction of the <i>C</i>-terminal ketone pyrrolidine moiety. A modified Fmoc solid-phase synthesis strategy was adopted to effectively couple multiple sterically hindered <i>N</i>-methylated amino acids while suppressing epimerization. The total synthesis has enabled confirmation of the proposed absolute configuration of natural jahanyne
    corecore