39 research outputs found

    Cancer-Type Regulation of MIG-6 Expression by Inhibitors of Methylation and Histone Deacetylation

    Get PDF
    Epigenetic silencing is one of the mechanisms leading to inactivation of a tumor suppressor gene, either by DNA methylation or histone modification in a promoter regulatory region. Mitogen inducible gene 6 (MIG-6), mainly known as a negative feedback inhibitor of the epidermal growth factor receptor (EGFR) family, is a tumor suppressor gene that is associated with many human cancers. To determine if MIG-6 is inactivated by epigenetic alteration, we identified a group of human lung cancer and melanoma cell lines in which its expression is either low or undetectable and studied the effects of methylation and of histone deacetylation on its expression. The DNA methyltransferase (DNMT) inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) induced MIG-6 expression in melanoma cell lines but little in lung cancer lines. By contrast, the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) induced MIG-6 expression in lung cancer lines but had little effect in melanoma lines. However, the MIG-6 promoter itself did not appear to be directly affected by either methylation or histone deacetylation, indicating an indirect regulatory mechanism. Luciferase reporter assays revealed that a short segment of exon 1 in the MIG-6 gene is responsible for TSA response in the lung cancer cells; thus, the MIG-6 gene can be epigenetically silenced through an indirect mechanism without having a physical alteration in its promoter. Furthermore, our data also suggest that MIG-6 gene expression is differentially regulated in lung cancer and melanoma

    The Wnt Co-Receptor Lrp6 Is Required for Normal Mouse Mammary Gland Development

    Get PDF
    Canonical Wnt signals are transduced through a Frizzled receptor and either the LRP5 or LRP6 co-receptor; such signals play central roles during development and in disease. We have previously shown that Lrp5 is required for ductal stem cell activity and that loss of Lrp5 delays normal mammary development and Wnt1-induced tumorigenesis. Here we show that canonical Wnt signals through the Lrp6 co-receptor are also required for normal mouse mammary gland development. Loss of Lrp6 compromises Wnt/β-catenin signaling and interferes with mammary placode, fat pad, and branching development during embryogenesis. Heterozygosity for an inactivating mutation in Lrp6 is associated with a reduced number of terminal end buds and branches during postnatal development. While Lrp6 is expressed in both the basal and luminal mammary epithelium during embryogenesis, Lrp6 expression later becomes restricted to cells residing in the basal epithelial layer. Interestingly, these cells also express mammary stem cell markers. In humans, increased Lrp6 expression is associated with basal-like breast cancer. Taken together, our results suggest both overlapping and specific functions for Lrp5 and Lrp6 in the mammary gland

    Somatic Pairing of Chromosome 19 in Renal Oncocytoma Is Associated with Deregulated ELGN2-Mediated Oxygen-Sensing Response

    Get PDF
    Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma

    MEK2 Is Sufficient but Not Necessary for Proliferation and Anchorage-Independent Growth of SK-MEL-28 Melanoma Cells

    Get PDF
    Mitogen-activated protein kinase kinases (MKK or MEK) 1 and 2 are usually treated as redundant kinases. However, in assessing their relative contribution towards ERK-mediated biologic response investigators have relied on tests of necessity, not sufficiency. In response we developed a novel experimental model using lethal toxin (LeTx), an anthrax toxin-derived pan-MKK protease, and genetically engineered protease resistant MKK mutants (MKKcr) to test the sufficiency of MEK signaling in melanoma SK-MEL-28 cells. Surprisingly, ERK activity persisted in LeTx-treated cells expressing MEK2cr but not MEK1cr. Microarray analysis revealed non-overlapping downstream transcriptional targets of MEK1 and MEK2, and indicated a substantial rescue effect of MEK2cr on proliferation pathways. Furthermore, LeTx efficiently inhibited the cell proliferation and anchorage-independent growth of SK-MEL-28 cells expressing MKK1cr but not MEK2cr. These results indicate in SK-MEL-28 cells MEK1 and MEK2 signaling pathways are not redundant and interchangeable for cell proliferation. We conclude that in the absence of other MKK, MEK2 is sufficient for SK-MEL-28 cell proliferation. MEK1 conditionally compensates for loss of MEK2 only in the presence of other MKK

    Genomic expression and single-nucleotide polymorphism profiling discriminates chromophobe renal cell carcinoma and oncocytoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromophobe renal cell carcinoma (chRCC) and renal oncocytoma are two distinct but closely related entities with strong morphologic and genetic similarities. While chRCC is a malignant tumor, oncocytoma is usually regarded as a benign entity. The overlapping characteristics are best explained by a common cellular origin, and the biologic differences between chRCC and oncocytoma are therefore of considerable interest in terms of carcinogenesis, diagnosis and clinical management. Previous studies have been relatively limited in terms of examining the differences between oncocytoma and chromophobe RCC.</p> <p>Methods</p> <p>Gene expression profiling using the Affymetrix HGU133Plus2 platform was applied on chRCC (n = 15) and oncocytoma specimens (n = 15). Supervised analysis was applied to identify a discriminatory gene signature, as well as differentially expressed genes. High throughput single-nucleotide polymorphism (SNP) genotyping was performed on independent samples (n = 14) using Affymetrix GeneChip Mapping 100 K arrays to assess correlation between expression and gene copy number. Immunohistochemical validation was performed in an independent set of tumors.</p> <p>Results</p> <p>A novel 14 probe-set signature was developed to classify the tumors internally with 93% accuracy, and this was successfully validated on an external data-set with 94% accuracy. Pathway analysis highlighted clinically relevant dysregulated pathways of c-erbB2 and mammalian target of rapamycin (mTOR) signaling in chRCC, but no significant differences in p-AKT or extracellular HER2 expression was identified on immunohistochemistry. Loss of chromosome 1p, reflected in both cytogenetic and expression analysis, is common to both entities, implying this may be an early event in histogenesis. Multiple regional areas of cytogenetic alterations and corresponding expression biases differentiating the two entities were identified. Parafibromin, aquaporin 6, and synaptogyrin 3 were novel immunohistochemical markers effectively discriminating the two pathologic entities.</p> <p>Conclusions</p> <p>Gene expression profiles, high-throughput SNP genotyping, and pathway analysis effectively distinguish chRCC from oncocytoma. We have generated a novel transcript predictor that is able to discriminate between the two entities accurately, and which has been validated both in an internal and an independent data-set, implying generalizability. A cytogenetic alteration, loss of chromosome 1p, common to renal oncocytoma and chRCC has been identified, providing the opportunities for identifying novel tumor suppressor genes and we have identified a series of immunohistochemical markers that are clinically useful in discriminating chRCC and oncocytoma.</p

    Deficiency of FLCN in Mouse Kidney Led to Development of Polycystic Kidneys and Renal Neoplasia

    Get PDF
    The Birt–Hogg–Dubé (BHD) disease is a genetic cancer syndrome. The responsible gene, BHD, has been identified by positional cloning and thought to be a novel tumor suppressor gene. BHD mutations cause many types of diseases including renal cell carcinomas, fibrofolliculomas, spontaneous pneumothorax, lung cysts, and colonic polyps/cancers. By combining Gateway Technology with the Ksp-Cre gene knockout system, we have developed a kidney-specific BHD knockout mouse model. BHDflox/flox/Ksp-Cre mice developed enlarged kidneys characterized by polycystic kidneys, hyperplasia, and cystic renal cell carcinoma. The affected BHDflox/flox/Ksp-Cre mice died of renal failure at approximate three weeks of age, having blood urea nitrogen levels over tenfold higher than those of BHD flox/+/Ksp-Cre and wild-type littermate controls. We further demonstrated that these phenotypes were caused by inactivation of BHD and subsequent activation of the mTOR pathway. Application of rapamycin, which inhibits mTOR activity, to the affected mice led to extended survival and inhibited further progression of cystogenesis. These results provide a correlation of kidney-targeted gene inactivation with renal carcinoma, and they suggest that the BHD product FLCN, functioning as a cyst and tumor suppressor, like other hamartoma syndrome–related proteins such as PTEN, LKB1, and TSC1/2, is a component of the mTOR pathway, constituting a novel FLCN-mTOR signaling branch that regulates cell growth/proliferation

    Internship Experience in Computational Biology at Van Andel Institute

    No full text
    PURPOSE: While satisfying the internship requirement for the GVSU Professional Science Masters in Biostatistics, this internship experience involved statistical support for biostatistics and bioinformatics projects for the Computational Biology Lab and collaborators of Dr. Kyle Furge at the Van Andel Institute. CHALLENGE: In a laboratory setting, the work involved learning new software and techniques in bioinformatics and gene expression analysis, while also learning and understanding unfamiliar concepts in biology. EXPERIENCE and OUTCOMES: Statistical genetics and associated statistical computing methodology are rapidly advancing areas in applied statistics. Extremely valuable experience in the analysis of gene expression micro-array data was obtained. Utilizing R software and specialized R packages, techniques such as survival analysis, pathway analysis and classification/clustering were applied. IMPACT: While completing the internship requirement of the Masters degree, obtaining valuable experience in an industry/research setting was a great opportunity. Methodology involving micro-array gene expression analysis was learned and applied to real-life examples

    License GPL-2

    No full text
    R topics documented: absMax........................................... 2 buildChromCytoband.................................... 2 buildChromMap....................................... 3 cset2band.......................................... 4 fromRevIsh......................................... 6 Hs.arms........................................... 7 isAbnormal......................................... 7 mcr.eset........................................... 8 movbin........................................... 9 movt............................................. 10 naMean........................................... 11 regmap........................................... 12 revish............................................ 13 rmAmbigMappings..................................... 14 smoothByRegion...................................... 15 summarizeByRegion.................................... 17 tBinomTest......................................... 19 writeGFF3.......................................... 2

    Byr4 and Cdc 16 form a two-component GTPase activating protein for the Spg1 GTPase that controls septation in fission yeast

    No full text
    Background: Spatial and temporal control of cytokinesis ensures the accurate transmission of genetic material and the correct development of multicellular organisms. An excellent model system in which to study cytokinesis is Schizosaccharomyces pombe because there are similarities between cytokinesis in S. pombe and mammals and because genes involved in S. pombe cytokinesis have been characterized. In particular, formation of the septum is positively regulated by the Spg1 GTPase and its effector, the Cdc7 kinase. Septation is negatively regulated by Cdc16, a protein similar to GTPase-activating proteins (GAPs) for Ypt GTPases, and by Byr4, a protein of unknown biochemical function. This study investigates the relationship between Byr4, Cdc16, and Spg1. Results: Genetic interactions were observed between byr4, cdc16, and spg1 mutants. Byr4 bound to Cdc16 and Spg1 in yeast two-hybrid assays and in coprecipitations in vitro and in yeast. Byr4 inhibited the dissociation and hydrolysis of GTP bound to Spg1, but when Byr4 and Cdc16 were combined together they displayed Spg1GAP activity in vitro; Cdc16 alone had no detectable GAP activity. The binding of Byr4 to Spg1 and the Byr4-Cdc16 Spg1 GAP activity were specific because Byr4 and Cdc16 did not bind to or affect the GTPase activities of the seven known S. pombe Ypt family GTPases. Conclusions: Byr4 and Cdc16 form a two-component GAP for the Spg1 GTPase. Byr4 and Cdc16 appear to negatively regulate septation in S. pombe by modulating the nucleotide state of Spg1 possibly in a spatially or temporally controlled manner
    corecore