329 research outputs found

    Multi-imaging and Bayesian estimation for photon counting with EMCCD's

    Full text link
    A multi-imaging strategy is proposed and experimentally tested to improve the accuracy of photon counting with an electron multiplying charge-coupled device (EMCCD), by taking into account the random nature of its on-chip gain and the possibility of multiple photo-detection events on one pixel. This strategy is based on Bayesian estimation on each image, with a priori information given by the sum of the images. The method works even for images with large dynamic range, with more improvement in the low light level areas. In these areas, two thirds of the variance added by the EMCCD in a conventional imaging mode are removed, making the physical photon noise predominant in the detected image.Comment: 19 page

    Optical Coherence Spectro-Tomography by all-Optical Depth-Wavelength analysis

    Full text link
    Current spectroscopic optical coherence tomography (OCT) methods rely on a posteriori numerical calculation. We present an alternative for accessing optically the spectroscopic information in OCT, i.e. without any post-processing, by using a grating based correlation and a wavelength demultiplexing system. Conventional A-scan and spectrally resolved A-scan are directly recorded on the image sensor. Furthermore, due to the grating based system, no correlation scan is necessary. In the frame of this paper we present the principle of the system as well as first experimental results

    Ultrafast turbidity compensation in the optical therapeutic window by three-wave mixing phase conjugation

    No full text
    International audienceImaging by phase conjugation through diffusing media is performed by using parametric amplification in a type II crystal, at a wavelength included in the therapeutic window. By nature, the method ensures imaging in a time far below the decorrelation time of in vivo biological tissues. A systematic comparison of performance with direct imaging is provided

    Direct machining of curved trenches in silicon with femtosecond accelerating beams

    No full text
    International audienceControl of the longitudinal profile of ablated structures during laser processing is a key technological requirement. We report here on the direct machining of trenches in silicon with circular profiles using femtosecond accelerating beams. We describe the ablation process based on an intensity threshold model, and show how the depth of the trenches can be predicted in the framework of a caustic description of the beam

    Spherical light, arbitrary nonparaxial accelerating beams and femtosecond laser micromachining of curved profiles

    No full text
    International audienceWe review our recent results applying caustics wave theory to the generation of arbitrary curved accelerating beams and their use in the field of femtosecond laser materials processing. We report experimental realization of highly nonparaxial accelerating beams with circular, parabolic and quartic trajectories that extend over more than 95 degrees of arc as well as spherical optical fields. We also report femtosecond laser curved edge profiling

    Micromachining along a curve: Femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams

    No full text
    International audienceWe report femtosecond laser micromachining of micron-size curved structures using tailored accelerating beams. We report surface curvatures as small as 70 μm in both diamond and silicon, which demonstrates the wide applicability of the technique to materials that are optically transparent or opaque at the pump laser wavelength. We also report the machining of curved trenches in silicon. Our results are consistent with an ablation-threshold model based on calculated local beam intensity, and we also observe asymmetric debris deposition which is interpreted in terms of the optical properties of the incident accelerating beam

    Filamentation of high-angle nondiffracting beams and applications to ultrafast laser processing

    No full text
    International audienceWe report on filamentation of nondiffracting beams and show that the intense light-matter interaction regime achieved on long distances allows for an enhanced control on ultrashort laser deep ablation

    Implementing two-photon interference in the frequency domain with electro-optic phase modulators

    Full text link
    Frequency-entangled photons can be readily produced using parametric down-conversion. We have recently shown how such entanglement could be manipulated and measured using electro-optic phase modulators and narrow-band frequency filters, thereby leading to two-photon interference patterns in the frequency domain. Here we introduce new theoretical and experimental developments showing that this method is potentially a competitive platform for the realization of quantum communication protocols in standard telecommunication fibres. We derive a simple theoretical expression for the coincidence probabilities and use it to optimize a Bell inequality. Furthermore, we establish an equivalence between the entangled- photon scheme and a classical interference scheme. Our measurements of two-photon interference in the frequency domain yield raw visibilities in excess of 99%. We use our high quality setup to experimentally validate the theoretical predictions, and in particular we report a violation of the CH74 inequality by more than 18 standard deviations.Comment: 19 pages, 3 figure
    • …
    corecore