8 research outputs found

    Quantitative signature for architectural organization of regulatory factors using intranuclear informatics

    Get PDF
    Regulatory machinery for replication and gene expression is punctately organized in supramolecular complexes that are compartmentalized in nuclear microenvironments. Quantitative approaches are required to understand the assembly of regulatory machinery within the context of nuclear architecture and to provide a mechanistic link with biological control. We have developed \u27intranuclear informatics\u27 to quantify functionally relevant parameters of spatially organized nuclear domains. Using this informatics strategy we have characterized post-mitotic reestablishment of focal subnuclear organization of Runx (AML/Cbfa) transcription factors in progeny cells. By analyzing point mutations that abrogate fidelity of Runx intranuclear targeting, we establish molecular determinants for the spatial order of Runx domains. Our novel approach provides evidence that architectural organization of Runx factors may be fundamental to their tissue-specific regulatory function

    Role of EHD1 and EHBP1 in perinuclear sorting and insulin-regulated GLUT4 recycling in 3T3-L1 adipocytes

    No full text
    Insulin stimulates glucose transport in muscle and adipose tissues by recruiting intracellular membrane vesicles containing the glucose transporter GLUT4 to the plasma membrane. The mechanisms involved in the biogenesis of these vesicles and their translocation to the cell surface are poorly understood. Here, we report that an Eps15 homology (EH) domain-containing protein, EHD1, controls the normal perinuclear localization of GLUT4-containing membranes and is required for insulin-stimulated recycling of these membranes in cultured adipocytes. EHD1 is a member of a family of four closely related proteins (EHD1, EHD2, EHD3, and EHD4), which also contain a P-loop near the N terminus and a central coiled-coil domain. Analysis of cultured adipocytes stained with anti-GLUT4, anti-EHD1, and anti-EHD2 antibodies revealed that EHD1, but not EHD2, partially co-localizes with perinuclear GLUT4. Expression of a dominant-negative construct of EHD1 missing the EH domain (DeltaEH-EHD1) markedly enlarged endosomes, dispersed perinuclear GLUT4-containing membranes throughout the cytoplasm, and inhibited GLUT4 translocation to the plasma membranes of 3T3-L1 adipocytes stimulated with insulin. Similarly, small interfering RNA-mediated depletion of endogenous EHD1 protein also markedly dispersed perinuclear GLUT4 in cultured adipocytes. Moreover, EHD1 is shown to interact through its EH domain with the protein EHBP1, which is also required for insulin-stimulated GLUT4 movements and hexose transport. In contrast, disruption of EHD2 function was without effect on GLUT4 localization or translocation to the plasma membrane. Taken together, these results show that EHD1 and EHBP1, but not EHD2, are required for perinuclear localization of GLUT4 and reveal that loss of EHBP1 disrupts insulin-regulated GLUT4 recycling in cultured adipocytes

    Unconventional Myosin Myo1c Promotes Membrane Fusion in a Regulated Exocytic Pathway

    Get PDF
    Glucose homeostasis is controlled in part by regulation of glucose uptake into muscle and adipose tissue. Intracellular membrane vesicles containing the GLUT4 glucose transporter move towards the cell cortex in response to insulin and then fuse with the plasma membrane. Here we show that the fusion step is retarded by the inhibition of phosphatidylinositol (PI) 3-kinase. Treatment of insulin-stimulated 3T3-L1 adipocytes with the PI 3-kinase inhibitor LY294002 causes the accumulation of GLUT4-containing vesicles just beneath the cell surface. This accumulation of GLUT4-containing vesicles near the plasma membrane prior to fusion requires an intact cytoskeletal network and the unconventional myosin motor Myo1c. Remarkably, enhanced Myo1c expression under these conditions causes extensive membrane ruffling and overrides the block in membrane fusion caused by LY294002, restoring the display of GLUT4 on the cell exterior. Ultrafast microscopic analysis revealed that insulin treatment leads to the mobilization of GLUT4-containing vesicles to these regions of Myo1c-induced membrane ruffles. Thus, localized membrane remodeling driven by the Myo1c motor appears to facilitate the fusion of exocytic GLUT4-containing vesicles with the adipocyte plasma membrane

    EHD2 and the novel EH domain binding protein EHBP1 couple endocytosis to the actin cytoskeleton

    No full text
    Here we identified two novel proteins denoted EH domain protein 2 (EHD2) and EHD2-binding protein 1 (EHBP1) that link clathrin-mediated endocytosis to the actin cytoskeleton. EHD2 contains an N-terminal P-loop and a C-terminal EH domain that interacts with NPF repeats in EHBP1. Disruption of EHD2 or EHBP1 function by small interfering RNA-mediated gene silencing inhibits endocytosis of transferrin into EEA1-positive endosomes as well as GLUT4 endocytosis into cultured adipocytes. EHD2 localizes with cortical actin filaments, whereas EHBP1 contains a putative actin-binding calponin homology domain. High expression of EHD2 or EHBP1 in intact cells mediates extensive actin reorganization. Thus EHD2 appears to connect endocytosis to the actin cytoskeleton through interactions of its N-terminal domain with membranes and its C-terminal EH domain with the novel EHBP1 protein

    Mitotic retention of gene expression patterns by the cell fate-determining transcription factor Runx2

    No full text
    During cell division, cessation of transcription is coupled with mitotic chromosome condensation. A fundamental biological question is how gene expression patterns are retained during mitosis to ensure the phenotype of progeny cells. We suggest that cell fate-determining transcription factors provide an epigenetic mechanism for the retention of gene expression patterns during cell division. Runx proteins are lineage-specific transcription factors that are essential for hematopoietic, neuronal, gastrointestinal, and osteogenic cell fates. Here we show that Runx2 protein is stable during cell division and remains associated with chromosomes during mitosis through sequence-specific DNA binding. Using siRNA-mediated silencing, mitotic cell synchronization, and expression profiling, we identify Runx2-regulated genes that are modulated postmitotically. Novel target genes involved in cell growth and differentiation were validated by chromatin immunoprecipitation. Importantly, we find that during mitosis, when transcription is shut down, Runx2 selectively occupies target gene promoters, and Runx2 deficiency alters mitotic histone modifications. We conclude that Runx proteins have an active role in retaining phenotype during cell division to support lineage-specific control of gene expression in progeny cells

    Mitotic occupancy and lineage-specific transcriptional control of rRNA genes by Runx2

    No full text
    Regulation of ribosomal RNA genes is a fundamental process that supports the growth of cells and is tightly coupled with cell differentiation. Although rRNA transcriptional control by RNA polymerase I (Pol I) and associated factors is well studied, the lineage-specific mechanisms governing rRNA expression remain elusive. Runt-related transcription factors Runx1, Runx2 and Runx3 establish and maintain cell identity, and convey phenotypic information through successive cell divisions for regulatory events that determine cell cycle progression or exit in progeny cells. Here we establish that mammalian Runx2 not only controls lineage commitment and cell proliferation by regulating genes transcribed by RNA Pol II, but also acts as a repressor of RNA Pol I mediated rRNA synthesis. Within the condensed mitotic chromosomes we find that Runx2 is retained in large discrete foci at nucleolar organizing regions where rRNA genes reside. These Runx2 chromosomal foci are associated with open chromat
    corecore