17 research outputs found

    An In-Depth Review of Niraparib in Ovarian Cancer: Mechanism of Action, Clinical Efficacy and Future Directions.

    Get PDF
    Niraparib is an oral, potent, highly selective poly-ADP ribose polymerase 1 (PARP1) and PARP2 inhibitor. In most developed countries, it is approved as a maintenance treatment for epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients with complete or partial response to platinum-based therapy. These approvals are based on results of randomised, double-blind, placebo-controlled trials, particularly the NOVA trial and more recently the PRIMA trial. In this comprehensive review, we delve into the scientific basis of PARP inhibition, discussing both preclinical and clinical data which have led to the current approval status of niraparib. We also discuss ongoing trials and biological rationale of combination treatments involving niraparib, with particular focus on antiangiogenic drugs, immune checkpoint inhibitors and cyclic GMP-AMP synthase stimulator of interferon genes (cGAS/STING) pathway. In addition, we reflect on potential strategies and challenges of utilising current biomarkers for treatment selection of patients to ensure maximal benefit

    A Feasibility Study of the Therapeutic Response and Durability of Short-term Androgen-targeted Therapy in Early Prostate Cancer Managed with Surveillance: The Therapeutics in Active Prostate Surveillance (TAPS01) Study.

    No full text
    BACKGROUND: Active surveillance (AS) is a preferred management option for men with prostate cancer with favourable prognosis. However, nearly half of men on AS switch to treatment within 5 years, so therapeutic strategies to prevent or delay disease progression could be considered. The androgen receptor is the pre-eminent oncogenic driver in prostate cancer. OBJECTIVE: To explore image-based tumour responses and the patient impact of short-duration androgen-targeted therapy (ATT) to abrogate disease progression during AS. DESIGN SETTING AND PARTICIPANTS: Men on AS with Cambridge Prognostic Group 1 & 2 (low and favourable intermediate risk) prostate cancer and lesions visible on magnetic resonance imaging (MRI) were recruited to an open-label, single-centre, phase 2 feasibility study of short-term ATT (the TAPS01 study). INTERVENTION: Apalutamide 240 mg was administered for 90 days. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: MRI-measured tumour volume (TV), gland volume (GV), and the TV/GV ratio were calculated at baseline, at day 90 (end of treatment), and at 6- and 18-month follow-up. Quality of life metrics were measured at day 0, day 90, and 6 weeks after ATT. RESULTS AND LIMITATIONS: Eleven patients (40% of eligible men approached) agreed to participate, of whom nine completed treatment. At day 90, the median percentage reduction was -38.2% (range -51.8% to -23.5%) for GV, -54.2% (range -74.1% to -13.8%) for TV, and -27.2% (range -61.5% to -7.5%) for TV/GV (all p < 0.0001). At 6 mo, while GV had returned to baseline (p = 0.95) both TV (-31.9%; p = 0.0007) and TV/GV (-28.7%; p = 0.0009) remained significantly reduced. This reduction was sustained at 18 months (TV -18%, TV/GV -23.8%; p = 0.01). European Organization for Research and Treatment of Cancer QoL core 30-item questionnaire scores for global, physical, role, and social functioning decreased during treatment, but all were recovering by 6 weeks. EQ-VAS scores were unchanged compared to baseline. CONCLUSIONS: TAPS01 has demonstrated feasibility and patient tolerability for short-term ATT in men on AS. Our data suggest a selective and durable antitumour effect in the short term and support a larger-scale randomised trial. PATIENT SUMMARY: We investigated the feasibility of short-term treatment with an androgen inhibitor to prevent or delay disease progression for men on active surveillance for prostate cancer. Results for a small group of patients show that 90-day treatment led to a sustained decrease in tumour volume over 18 months. The findings warrant a larger clinical trial for this approach, which could allow patients to delay or even avoid longer-term active treatments.Janssen unrestricted education gran

    Radiomic and Volumetric Measurements as Clinical Trial Endpoints-A Comprehensive Review.

    No full text
    Clinical trials for oncology drug development have long relied on surrogate outcome biomarkers that assess changes in tumor burden to accelerate drug registration (i.e., Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) criteria). Drug-induced reduction in tumor size represents an imperfect surrogate marker for drug activity and yet a radiologically determined objective response rate is a widely used endpoint for Phase 2 trials. With the addition of therapies targeting complex biological systems such as immune system and DNA damage repair pathways, incorporation of integrative response and outcome biomarkers may add more predictive value. We performed a review of the relevant literature in four representative tumor types (breast cancer, rectal cancer, lung cancer and glioblastoma) to assess the preparedness of volumetric and radiomics metrics as clinical trial endpoints. We identified three key areas-segmentation, validation and data sharing strategies-where concerted efforts are required to enable progress of volumetric- and radiomics-based clinical trial endpoints for wider clinical implementation

    Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma.

    No full text
    BACKGROUND: Pathological response to neoadjuvant treatment for patients with high-grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and non-invasive response predictors could improve patient stratification. We developed computed tomography (CT) radiomic measures to predict neoadjuvant response before NACT using CRS as a gold standard. METHODS: Omental CT-based radiomics models, yielding a simplified fully interpretable radiomic signature, were developed using Elastic Net logistic regression and compared to predictions based on omental tumor volume alone. Models were developed on a single institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to NCT) and tested on an external test cohort (n = 48; 21% complete response). RESULTS: The performance of the comprehensive radiomics models and the fully interpretable radiomics model was significantly higher than volume-based predictions of response in both the discovery and external test sets when assessed using G-mean (geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and reliability in identifying non-responders when using radiomics. The performance of a fully interpretable model was similar to that of comprehensive radiomics models. CONCLUSIONS: CT-based radiomics allows for predicting response to NACT in a timely manner and without the need for abdominal surgery. Adding pre-NACT radiomics to volumetry improved model performance for predictions of response to NACT in HGSOC and was robust to external testing. A radiomic signature based on five robust predictive features provides improved clinical interpretability and may thus facilitate clinical acceptance and application
    corecore