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Abstract

Purpose To develop a precision tissue sampling technique that uses computed tomography (CT)-based radiomic tumour habitats

for ultrasound (US)-guided targeted biopsies that can be integrated in the clinical workflow of patients with high-grade serous

ovarian cancer (HGSOC).

Methods Six patients with suspected HGSOC scheduled for US-guided biopsy before starting neoadjuvant chemotherapy were

included in this prospective study from September 2019 to February 2020. The tumour segmentation was performed manually on

the pre-biopsy contrast-enhanced CT scan. Spatial radiomic maps were used to identify tumour areas with similar or distinct

radiomic patterns, and tumour habitats were identified using the Gaussian mixture modelling. CT images with superimposed

habitat maps were co-registered with US images by means of a landmark-based rigid registration method for US-guided targeted

biopsies. The dice similarity coefficient (DSC) was used to assess the tumour-specific CT/US fusion accuracy.

Results We successfully co-registered CT-based radiomic tumour habitats with US images in all patients. The median time

between CT scan and biopsy was 21 days (range 7-30 days). The median DSC for tumour-specific CT/US fusion accuracy was

0.53 (range 0.79 to 0.37). The CT/US fusion accuracy was high for the larger pelvic tumours (DSC: 0.76-0.79) while it was lower

for the smaller omental metastases (DSC: 0.37-0.53).

Conclusion We developed a precision tissue sampling technique that uses radiomic habitats to guide in vivo biopsies using CT/

US fusion and that can be seamlessly integrated in the clinical routine for patients with HGSOC.

Key Points

» We developed a prevision tissue sampling technique that co-registers CT-based radiomics—based tumour habitats with US
images.

* The CT/US fusion accuracy was high for the larger pelvic tumours (DSC: 0.76—0.79) while it was lower for the smaller omental
metastases (DSC. 0.37-0.53).
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Abbreviations

CT Computed tomography

DSC Dice similarity coefficient
HGSOC High-grade serous ovarian cancer
US Ultrasound

VOI Volume of interest

Introduction

Improving patient stratification is a major challenge in
high-grade serous ovarian cancer (HGSOC) where both
genomic and tumour microenvironment heterogeneity is
found within and between patients [1-4]. High genomic
heterogeneity is associated with reduced progression-free
survival [1, 2, 4-7].

Molecular pathology has become key in improving strati-
fication, but single biopsies fail to assess spatial tumour het-
erogeneity, providing inadequate sampling of the multiscale
complexity of the disease. However, since the number of bi-
opsies that can be obtained from a tumour is limited due to the
invasiveness of the procedure, there is a need to guide this
sampling. Routinely performed medical scans provide a
non-invasive solution for capturing spatial heterogeneity
quantitatively by the use of radiomics [8], even offering the
possibility of doing so in a longitudinal manner if acquired
over the course of therapy.

Radiomics refers to the analysis of quantitative features
extracted from imaging data [8—10]. The analysis of radiomic
features in a spatial manner is often performed by extracting
tumour habitats. Tumour habitats are defined as regions with
distinct local radiomic phenotypes (i.e. texture features ex-
pression), which may capture different pathophysiology [11,
12]. Tumour habitats can be identified on variable imaging
modalities including computed tomography (CT), magnetic
resonance imaging (MRI), or ultrasound (US). These tumour
habitats may represent areas of different genomic and
transcriptomic characteristics [12] and could be used to under-
stand tumour resistance to targeted therapeutics. Indeed, some
associations have already been found between spatial
radiomics and biological correlates [13, 14]. We have devel-
oped patient-specific 3D-printed custom moulds to enable
precise multiregional sampling of different radiomic regions
from resected specimens [12, 15] as targeted biopsies are key
to capture relevant tumour regions. However, methods to se-
quentially sample specific radiomic habitats during therapy
have not been developed.

MRI or CT/US fusion biopsies are an emerging technique
to selectively target areas of interest [16, 17]. MRI/US fusion
biopsies improve the accuracy to detect especially clinically
significant prostate cancer while decreasing the detection of
low-grade cancers [16, 18]. MRI or CT/US fusion systems are
increasingly used to target hepatic lesions as they increase the
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accuracy to target tumours that are undetectable with US alone
[19]. So far no studies have applied imaging-guided US fusion
biopsies in patients with HGSOC.

The purpose of this study was to develop a precision tissue
sampling technique that uses CT-based radiomic tumour hab-
itats for US-guided targeted biopsies that can be integrated in
the clinical workflow of patients with HGSOC.

Material and methods

This single-centre prospective study was approved by our in-
stitutional review board. Written and informed consent was
obtained from all participants. The study flowchart is shown
in Fig. 1.

Study participants

Research participants were consecutively and prospectively
recruited from the Cambridge University Hospital, between
September 2019 and March 2020. Inclusion criteria were
age of 18 years or higher; radiological, clinical, or biochemical
suspicion of HGSOC; ability to undergo US-guided biopsy of
an omental or pelvic lesion; contrast-enhanced CT of the ab-
domen and pelvis; and willingness and ability to participate.
Exclusion criteria included inability to undergo US-guided
biopsy (platelet count < 50 G/1; prothrombin time > 16 s), on-
going treatment with anticoagulation (warfarin or
rivaroxaban), and targetable tumour volume of less than
3 cm’. Eight patients met the inclusion criteria. In two pa-
tients, we were not able to perform the US-guided fusion
biopsy as the dedicated US machine was not available at the
biopsy appointment.

CT acquisition and tumour segmentation

The clinically indicated contrast-enhanced CT scans were
acquired on three different scanners with slice thickness
ranging between 2 and 5 mm (Table 1). Images of the
portal venous phase, reconstructed with the soft tissue
reconstruction, were used for tumour segmentation. After
the identification of a potentially targetable lesion, it was
manually segmented to create a volume of interest (VOI)
using the Microsoft Radiomics App V1.0.28434.1 (project
InnerEye https://www.microsoft.com/en-us/research/
project/medical-image-analysis, Microsoft) by a
radiologist in the 5th year of training (L.B.) under the
supervision of a board-certificated radiologist with special
expertise in ovarian cancer imaging (E.S.) with 17 years
of experience.
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Fig. 1 Schematic workflow of the proposed US-guided targeted biopsies
of distinct CT-based radiomic tumour phenotypes. Standard-of-care
contrast-enhanced (CE) CTs were used to manually segment US target-
able tumour deposits in the pelvis or omentum. Automated tissue sub-
segmentation was applied in selected omental lesions to remove non-
tumoural fatty tissue at the segmentation edges. Spatial radiomic features

Computational work to obtain CT radiomic habitats

In two patients with omental disease (patients 3 and 4), we
performed an automatic sub-segmentation (i.e. delineation of
the solid region of the tumour excluding other parts such as
fat) of the omental VOI as proposed recently in [20]. The sub-
segmentation was only used for two omental tumours as pel-
vic lesions do not contain interspersed fat and are better
defined.

Radiomic feature maps were created for each of the VOIs.
Radiomic maps differ from traditional radiomic features in
that textures are computed for the neighbourhood around each
and every voxel in the VOI; the resulting “maps” therefore
capture the spatial variation of the texture lesion. In particular,
we used a sliding window algorithm with a window size of

were computed and the Gaussian mixture modelling clustering was ap-
plied to identify up to three habitats per tumour lesion. Habitat maps were
exported and manually uploaded together with the source CT data to a US
machine. Up to two biopsies per habitat were obtained and used for
clinical diagnosis, as well as for research purposes

5 x 5 voxels. Textures extracted included grey-level co-occur-
rence matrix energy, entropy, sum average, correlation, in-
verse difference moment normalised, contrast, cluster shade,
cluster prominence, and Haralick correlation [21]. Patch-wise
texture maps are done by calculating the Haralick texture
values in sliding windows centred around each voxel. The
sliding window used was 5 x 5 voxels in our case. Texture
values were extracted using 32 grey levels and 2D direction-
ality using the Computational Environment for Radiological
Research (CERR) package (https://doi.org/10.1118/1.
1568978). To avoid redundancy arising from the
mathematical formulation of radiomic features, we used the
principal component analysis (PCA), a technique for
dimensionality reduction. The texture maps were mapped
into six principal components (PC) using PC analysis that

Table 1  CT imaging parameter settings

ID Vendor CT machine Row Tube Pixel Slice Kernel — Reconstruction Delay Contrast Contrast Contrast
voltage spacing thickness interval (mm) (sec)  type (ml) dose
kV) (mm) (mm) (ml/kg)

1 GE Optima CT660 64 100 0.814 3.75 Standard 1.5 60 Omnipaque 60 1.0

2 GE Optima CT660 64 120 0.672 3.75 Standard 2.5 60 Orir(:i(;aque 70 1.0

3 Siemens Definition AS 64 140 0.977 2 130f\3 1.5 60 Orir(:i(;)aque 70 0.9

4 Siemens Definition AS 64 100 0.596 2 1261\3 1.5 60 Onir(:i(;)aque 70 1.0

5 Siemens Definition Flash 128 100 0.727 2 B20f 1.5 60 Onir(:i(;aque 60 0.9

6 Siemens Definition Flash 128 120 0.719 5 B30f 5 60 Orflgi(;)aque 70 0.7

300

CT, computed tomography
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retained more than 90% of the variance in an independent
cohort of 75 patients with HGSOC undergoing pre-
neoadjuvant therapy. The principal component version of
the texture features maps and Hounsfield unit values were
used to define habitats using a clustering technique known
as the Gaussian mixture modelling. The maximum possible
number of habitats was set to 3, in agreement with the maxi-
mum number of targeted biopsies per lesion considered to be
feasible. The optimal number of habitats was automatically
selected according to the minimum Akaike information crite-
rion (AIC) value. The AIC is a measure of model quality that
can be used for comparing clustering results. The lower AIC
represents the maximum accuracy achieved. Habitat maps
resulting from the clustering step were then exported in
DICOM format. Computations were performed with
MATLAB® R2019b (The MathWorks).

US-guided biopsy

All participants underwent a US-guided biopsy using the
Aplio 1800 US system (Canon Medical Systems, Otawara,
Japan) with an i8CX1 3.5-MHz convex transducer (PVI-
475BX; Canon Medical Systems) by a board-certificated
gynaecological radiologist (H.A.) with 9 years of experience.
The US machine was coupled with a magnetic field generator
and an electromagnetic position sensor connected with a
position-sensing unit attached to the US probe through a
bracket. The commercially available software Smart Fusion
(Canon Medical Systems) was used to achieve real-time im-
age fusion of the US with the CT data.

Before starting the US biopsy procedure, the CT im-
ages were registered onto the US data using a landmark-
based rigid-body registration. First, the axial orientation
of the CT images was registered by obtaining a US image
in a strictly axial plane. Second, between one and three
fusion points were used as landmarks to register the z-axis
between the CT volume dataset and the US data. The first
fusion point in all patients was the anterior superior mar-
gin of the pubic symphysis. The umbilicus and spina
iliaca anterior superior were used as second and third fu-
sion points. The fusion quality indicator was between 8
and 10. This can take a value between 1 and 10, where 1
indicates a poor fusion signal quality and 10 an excellent
quality.

Up to six biopsies (two per tumour habitat) were obtained
using a 14G biopsy needle (Temno Evolution Biopsy Device,
Cardinal Health). Cine clips covering the targeted tumour tis-
sue were recorded before and during the biopsy procedures.

Half of each biopsy core was formalin embedded. After the
biopsy, we monitored patients for 6 h before discharge.
Adverse events including bleeding, wound infection, and re-
hospitalisation were assessed.

@ Springer

Quantification of CT/US fusion accuracy

The dice similarity coefficient (DSC) was used to quantify the
fusion accuracy by assessing the overlap of the tumour region
between the US and CT. The co-registered CT/US image cov-
ering the largest tumour area on the CT was selected to calcu-
late the DSC. These images were exported as JPEG files. A
radiologist in the 5th year of training (L.B.) segmented the
tumour on the B-mode US image using ImageJ (ImageJ
1.52a). The binary masks of the segmentations were further
processed with MATLAB® R2019b and the DSC was
calculated.

Histological examination

All tissue samples were assessed by a board-certified
gynaecologic pathologist (M.J-L).

Results
CT/US fusion for radiomic habitat-guided biopsy

Figure 1 summarises the radiological and clinical workflow.
We performed targeted CT/US fusion-guided biopsies in six
patients. The demographic and clinical characteristics are
shown in Table 2. Figure 2 displays the detailed imaging
characteristics at each step for patient 5. For patients 2 and
5, we obtained biopsies from the pelvic lesion, and in patients
1, 3,4, and 6, we obtained biopsies from the omental deposits.
The tumour volumes of the targeted omental lesions (medi-
an= 103 cm’; range: 16-295 cm®) were smaller compared to
those of the pelvic lesions (median =520 cm?®; range: 448—
592 cm®). No adverse events were observed following the
biopsy procedures. For patients 1 and 3, the biopsy material
was insufficient for diagnosis and these patients underwent
diagnostic laparoscopy that established the diagnosis of
HGSOC.

Assessment of the US-CT fusion accuracy

The DSC was 0.76 and 0.79, respectively, for pelvic lesions,
and 0.37, 0.43, and 0.53 respectively for omental lesions
(Fig. 3). We were not able to calculate a DSC for patient 1
as the tumour edges were not visible on the B-mode ultra-
sound images.

Histological assessment

In patient 5, we obtained sufficient tumour tissue from two
radiomically different habitats to evaluate their morphology
using H&E staining (Fig. 4). No differences in terms of tissue
morphology were observed between the two tumour habitats.
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Table 2 Patient demographics
and clinical parameters ID Age Stage Days Site of Bx  Nrof Nr of Volume  Biopsy Weight
Bx-CT biopsies clusters cm’ result (kg)
1 59 3C 30 Omentum 1 3 15.7 Insufficient 61
material
59 4B 10 Pelvis 3 3 591.7 HGSOC 69
53 4A 29 Omentum 2 3 295.2 Insufficient 77
material
68 3C 16 Omentum 4 3 19.4 HGSOC 72
76 4A 7 Pelvis 4 3 448.3 HGSOC 66
77 4B 26 Omentum 3 3 187.4 HGSOC 94

Bx, biopsy; CT, computed tomography; HGSOC, high-grade serous ovarian cancer

Discussion

In this technical development study, we demonstrated the fea-
sibility of prospective sampling of CT-based radiomic habitats
using US-guided fusion biopsies in patients with HGSOC
prior to neoadjuvant chemotherapy. We used standard-of-
care, contrast-enhanced CT to extract radiomic tumour habitat
maps and identify distinct regions within the tumour. We pro-
posed a technique to register these CT radiomic tumour hab-
itat maps to the real-time US scans and used them to guide
tissue sampling of the habitats.

Radiomic features are a non-invasive method to quantify
and map tumour heterogeneity. They are associated with ge-
nomic heterogeneity [12, 22, 23] which predicts response to
chemotherapy and poor outcome in patients with HGSOC [1,
6]. However, the biological pathways underlying different im-
aging habitats are poorly understood. To overcome this chal-
lenge and lay the foundation for future risk stratification, we
proposed a technology that uses standard-of-care CT imaging
to sample regions with distinct radiomic habitats.

Radiology Computation

Fig. 2 Illustration of a patient with a pelvic tumour. a Routine contrast-
enhanced CT images were used to manually segment the pelvic tumour
(dashed line). b Spatial radiomic feature extraction and generation of
habitat maps. For this patient, three tumour habitats are feasible and
highlighted in blue, red, and green, respectively. ¢ The left figure shows

The accurate spatial registration between the CT and US
images is a prerequisite for reliable habitat-guided tissue
targeting and for the generalizability of the results. We observed
differences in the fusion accuracy between omental deposits
and pelvic lesions, with higher accuracies for the pelvic lesions.
The average DSC for the pelvic lesions was 0.78, indicating a
good registration accuracy. This can be explained by the larger
tumour volume of pelvic lesions and by their relatively fixed
position in the pelvis compared to more flexible positions of
omental deposits. The lower performance in all three omental
lesions was due to a high degree of misregistration in the
anterior-posterior axis. This is mainly explained by the variabil-
ity of the anterior abdominal wall and omentum due to the local
pressure of the ultrasound probe. Patient tracker systems that
correct for local patient movements can overcome this limita-
tion and improve the registration accuracy for difficult tumour
sites such as omentum. We plan to implement and test these
systems in subsequent studies.

Obtaining high-quality tissue samples that are suffi-
cient for routine workup and genomic analysis are

|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
I
|
|

the US image with the co-registered CT-based tumour segmentation
(dashed line). The right figure shows the CT scan overlaying the US
plane, with the habitat maps highlighted in colour. The US images cor-
respond to a different plane orientation with respect to panels a and b
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Fig. 3 The accuracy of the CT/US fusion was associated with the tumour
volume and was higher for pelvic compared to omental tumours. The dice
similarity coefficient (DSC) was used to assess the accuracy of the CT/US

critical to translate research biopsy techniques into clin-
ical practice. The reported success rate for omental and
pelvic mass biopsies in patients with suspected ovarian
cancer is approximately 89% [24]. Biopsies in two out
of six patients (33%) reported in this study yielded an
inadequate sample (fat or skeletal muscle) which is
higher compared to previous reports. These two patients
with inadequate biopsy samples had either a small
omental tumour volume (patient 1: 15.7 ¢cm?) or a high
body mass index that made the US biopsy procedure
more challenging.

Our approach has several limitations that can be im-
proved in subsequent studies. We used rigid co-
registration and there was a time delay between the
CT acquisition and the US-guided biopsy, which means
that there could be biases due to unexpected deforma-
tions. In addition, the accuracy assessment was based on
a limited number of 2D slices, which may not optimally
represent the tumour volume. We also found that we
were not able to biopsy all the CT-based tumour habi-
tats, because of their small volume. This trade-off

@ Springer

ID 4

ID6

fusion. The DSC was higher for the pelvic (larger) compared to that for
the omental (smaller) tumours that yielded a low DSC. Dashed line, CT
segmentation; solid line, US segmentation

between computational precision and practical feasibility
and safety will need to have a clinical decision. Based
on this work, we recommend setting a threshold of
3 cm® to determine tumour habitats in patients with
HGSOC and to generate no more than three habitats
per targetable lesion. In addition, we used three differ-
ent CT scanners with slice thicknesses ranging from 2
to 5 mm and four different reconstruction kernels which
could influence radiomics. However, as the aim was to
develop a method to co-register radiomic habitat maps
to US images to guide tissue sampling, we believe that
differences in slice thickness do negatively affect the
results of this study. The data we have obtained so far
demonstrates the feasibility of the technique but is lim-
ited in assessing the molecular differences between tu-
mour habitats. These radiogenomic associations can now
be tested in larger studies.

In conclusion, we developed a tissue sampling technique to
target CT-based radiomic habitats in vivo using a CT/US fu-
sion technology. This will enable new approaches to discover
and validate radiogenomic biomarkers.
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Fig. 4 Histological analysis of
biopsy material from patient 5
from two habitats. H&E staining
of samples from two distinct
habitats from the ovarian tumour
deposit (arrow) in the same pa-
tient. Panels a and b show low
power views of the needle cores.
Arrows indicate high power view
in ¢ and d. Bar=50 um
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