7,382 research outputs found

    No Superluminal Signaling Implies Unconditionally Secure Bit Commitment

    Full text link
    Bit commitment (BC) is an important cryptographic primitive for an agent to convince a mutually mistrustful party that she has already made a binding choice of 0 or 1 but only to reveal her choice at a later time. Ideally, a BC protocol should be simple, reliable, easy to implement using existing technologies, and most importantly unconditionally secure in the sense that its security is based on an information-theoretic proof rather than computational complexity assumption or the existence of a trustworthy arbitrator. Here we report such a provably secure scheme involving only one-way classical communications whose unconditional security is based on no superluminal signaling (NSS). Our scheme is inspired by the earlier works by Kent, who proposed two impractical relativistic protocols whose unconditional securities are yet to be established as well as several provably unconditionally secure protocols which rely on both quantum mechanics and NSS. Our scheme is conceptually simple and shows for the first time that quantum communication is not needed to achieve unconditional security for BC. Moreover, with purely classical communications, our scheme is practical and easy to implement with existing telecom technologies. This completes the cycle of study of unconditionally secure bit commitment based on known physical laws.Comment: This paper has been withdrawn by the authors due to a crucial oversight on an earlier work by A. Ken

    Rough surface scattering based on facet model

    Get PDF
    A model for the radar return from bare ground was developed to calculate the radar cross section of bare ground and the effect of the frequency averaging on the reduction of the variance of the return. It is shown that, by assuming that the distribution of the slope to be Gaussian and that the distribution of the length of the facet to be in the form of the positive side of a Gaussian distribution, the results are in good agreement with experimental data collected by an 8- to 18-GHz radar spectrometer system. It is also shown that information on the exact correlation length of the small structure on the ground is not necessary; an effective correlation length may be calculated based on the facet model and the wavelength of the incident wave

    Citation of non-English peer review publications – some Chinese examples

    Get PDF
    Articles published in English language journals with citations of non-English peer reviewed materials are not very common today. However, as epidemiologists are becoming more aware of data and information being readily available and accessible in the non-English literature, the question of whether non-English materials can be cited in English language journals and if so, how should they be cited, has become an increasingly important issue. Bringing together personal insights from the author's familiarity with both the English and Chinese language epidemiological literature and results from a survey on the use of citations of non-English peer reviewed materials across a sample of epidemiology and public health journals, this commentary discusses the different ways authors cite non-English articles in different English language journals and the different methods used by journals to handle non-Latin scripts (e.g. transliteration). This commentary will be useful to both epidemiologists and editors alike

    Donor procurement for intestinal transplantation

    Get PDF

    Progress in radar snow research

    Get PDF
    Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions

    A new method for designing shock-free transonic configurations

    Get PDF
    A method for the design of shock free supercritical airfoils, wings, and three dimensional configurations is described. Results illustrating the procedure in two and three dimensions are given. They include modifications to part of the upper surface of an NACA 64A410 airfoil that will maintain shock free flow over a range of Mach numbers for a fixed lift coefficient, and the modifications required on part of the upper surface of a swept wing with an NACA 64A410 root section to achieve shock free flow. While the results are given for inviscid flow, the same procedures can be employed iteratively with a boundary layer calculation in order to achieve shock free viscous designs. With a shock free pressure field the boundary layer calculation will be reliable and not complicated by the difficulties of shock wave boundary layer interaction

    Toward RADSCAT measurements over the sea and their interpretation

    Get PDF
    Investigations into several areas which are essential to the execution and interpretation of suborbital observations by composite radiometer - scatterometer sensor (RADSCAT) are reported. Experiments and theory were developed to demonstrate the remote anemometric capability of the sensor over the sea through various weather conditions. It is shown that weather situations found in extra tropical cyclones are useful for demonstrating the all weather capability of the composite sensor. The large scale fluctuations of the wind over the sea dictate the observational coverage required to correlate measurements with the mean surface wind speed. Various theoretical investigations were performed to establish a premise for the joint interpretation of the experiment data. The effects of clouds and rains on downward radiometric observations over the sea were computed. A method of predicting atmospheric attenuation from joint observations is developed. In other theoretical efforts, the emission and scattering characteristics of the sea were derived. Composite surface theories with coherent and noncoherent assumptions were employed
    • …
    corecore