12,066 research outputs found

    Position estimation of mobile robots based on coded infrared signal transmission

    Get PDF
    A system based on coded infrared signal transmission for the estimation of position of mobile robots in a structured environment is reported. Particular emphasis is placed on the polar coordinate arrangement in which signals are sent from the transmitters situated at the corners of the boundaries of operation. A multisensor system, strategically situated onboard the robot, has been found to improve the accuracy of the position estimation substantially. The information detected by the sensors is suitably processed to calculate the central position of the robot geometrically. The algorithms for the position calculations and the operational strategy are presented. This system forms the basis for the coordination and cooperation philosophy of multiple mobile robots sharing the same environment and performing cooperative or competitive tasks

    Detection of electrode asymmetry in electrochemical noise analysis

    Get PDF
    The electrochemical noise resistance is a calculation that can be used for estimating the rate of corrosion of a pair of metal samples purely from the electrochemical noise that they generate. Ideally these metal samples (electrodes) would be identical, but it is not uncommon, for various reasons, for the electrodes to be significantly different. In that case, the theory linking the noise resistance to the more conventional electrochemical parameter, the polarisation resistance, breaks down. This link is important because it is only via the polarisation resistance that noise resistance can be used for corrosion rate estimation. It is therefore important to be able to detect an asymmetric electrode pair. This paper describes how the cross correlation between voltage and current noise can be used to detect an asymmetr

    No Superluminal Signaling Implies Unconditionally Secure Bit Commitment

    Full text link
    Bit commitment (BC) is an important cryptographic primitive for an agent to convince a mutually mistrustful party that she has already made a binding choice of 0 or 1 but only to reveal her choice at a later time. Ideally, a BC protocol should be simple, reliable, easy to implement using existing technologies, and most importantly unconditionally secure in the sense that its security is based on an information-theoretic proof rather than computational complexity assumption or the existence of a trustworthy arbitrator. Here we report such a provably secure scheme involving only one-way classical communications whose unconditional security is based on no superluminal signaling (NSS). Our scheme is inspired by the earlier works by Kent, who proposed two impractical relativistic protocols whose unconditional securities are yet to be established as well as several provably unconditionally secure protocols which rely on both quantum mechanics and NSS. Our scheme is conceptually simple and shows for the first time that quantum communication is not needed to achieve unconditional security for BC. Moreover, with purely classical communications, our scheme is practical and easy to implement with existing telecom technologies. This completes the cycle of study of unconditionally secure bit commitment based on known physical laws.Comment: This paper has been withdrawn by the authors due to a crucial oversight on an earlier work by A. Ken

    Disguising quantum channels by mixing and channel distance trade-off

    Get PDF
    We consider the reverse problem to the distinguishability of two quantum channels, which we call the disguising problem. Given two quantum channels, the goal here is to make the two channels identical by mixing with some other channels with minimal mixing probabilities. This quantifies how much one channel can disguise as the other. In addition, the possibility to trade off between the two mixing probabilities allows one channel to be more preserved (less mixed) at the expense of the other. We derive lower- and upper-bounds of the trade-off curve and apply them to a few example channels. Optimal trade-off is obtained in one example. We relate the disguising problem and the distinguishability problem by showing the the former can lower and upper bound the diamond norm. We also show that the disguising problem gives an upper bound on the key generation rate in quantum cryptography.Comment: 27 pages, 8 figures. Added new results for using the disguising problem to lower and upper bound the diamond norm and to upper bound the key generation rate in quantum cryptograph

    Time-Energy Costs of Quantum Measurements

    Get PDF
    Time and energy of quantum processes are a tradeoff against each other. We propose to ascribe to any given quantum process a time-energy cost to quantify how much computation it performs. Here, we analyze the time-energy costs for general quantum measurements, along a similar line as our previous work for quantum channels, and prove exact and lower bound formulae for the costs. We use these formulae to evaluate the efficiencies of actual measurement implementations. We find that one implementation for a Bell measurement is optimal in time-energy. We also analyze the time-energy cost for unambiguous state discrimination and find evidence that only a finite time-energy cost is needed to distinguish any number of states.Comment: 10 pages, 6 figure

    Time-Energy Measure for Quantum Processes

    Get PDF
    Quantum mechanics sets limits on how fast quantum processes can run given some system energy through time-energy uncertainty relations, and they imply that time and energy are tradeoff against each other. Thus, we propose to measure the time-energy as a single unit for quantum channels. We consider a time-energy measure for quantum channels and compute lower and upper bounds of it using the channel Kraus operators. For a special class of channels (which includes the depolarizing channel), we can obtain the exact value of the time-energy measure. One consequence of our result is that erasing quantum information requires (n+1)/n\sqrt{(n+1)/n} times more time-energy resource than erasing classical information, where nn is the system dimension.Comment: 13 pages, 2 figure

    Vortex simulation of the pressure field of a jet

    Get PDF
    Fluctuations of the pressure field of a jet are simulated numerically by a flow model consisting of axisymmetric vortex rings with viscous cores submerged in an inviscid uniform stream. Vortex shedding time intervals, randomly created to imitate the time-history characteristics of the pressure signals of a jet, are generated based on a probability distribution of the intervals between successive pressure peaks obtained from experiments. It is found that, up to five diameters downstream of the jet exit, the characteristics of the pressure fluctuations and the most probable time intervals between experimental and numerical results show good qualitative agreements. The role played by the axisymmetric vortex model in pressure field as well as extensions of the model is also discussed
    corecore