1,176 research outputs found

    Energy-storage technologies and electricity generation

    Get PDF
    As the contribution of electricity generated from renewable sources (wind, wave, solar) grows, the inherent intermittency of supply from such generating technologies must be addressed by a step-change in energy storage. Furthermore, the continuously developing demands of contemporary applications require the design of versatile energy-storage/power-supply systems offering wide ranges of power density and energy density. As no single energy-storage technology has this capability, systems will comprise of combinations of technologies such as electrochemical supercapacitors, flow batteries, Lithium-ion batteries, superconducting magnetic energy storage (SMES) and kinetic energy storage. The evolution of the electrochemical supercapacitor is largely dependent on the development of optimised electrode materials (tailored to the chosen electrolyte) and electrolytes. Similarly, the development of Lithium-ion battery technology requires fundamental research in materials science aimed at delivering new electrodes and electrolytes; Lithium-ion technology has significant potential and a step-change is required in order to promote the technology from the portable electronics market into high-duty applications. Flow-battery development is largely concerned with safety and operability. However, opportunities exist to improve electrode technology yielding larger power densities. The main barriers to overcome in terms of the development of SMES technology are those related to high-temperature superconductors in terms of their granular, anisotropic nature. Materials development is essential for the successful evolution of flywheel technology. Given the appropriate research effort, the key scientific advances required in order to successfully develop energy-storage technologies generally represent realistic goals which may be achieved by 2050

    Energy storage : the route to liberation from the fossil fuel economy?

    Get PDF
    If a low-carbon energy strategy is to be developed up to 2050, renewable energy sources will need to be deployed on a large scale against a scenario of increasing global energy demand. Renewables will vary from large-scale regional wind and marine clusters to more localised 'micro' generation. If a low-carbon strategy is to be successful, automotive transport will also need to be linked to the renewable infrastructure. Both of these need the development of efficient and viable energy storage

    Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries

    Get PDF
    Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195 cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290 mA h g−1

    Estimating the demand for union-led learning in Scotland

    Get PDF
    The evidence contained here is the first comprehensive and formal statistical analysis of demand for union-led learning in Scotland or the UK. A high degree of consistency of outcome resulted from each of the data sources used. This provides reliable evidence that there is considerable current demand and latent demand for union-led learning in Scotland, and that increased union activity in this area is likely to further stimulate demand. Any expansion of union-led learning would, of course, place additional learning demands on ULRs and would highlight further the need for them to be appropriately supported by unions and employers

    Commercial fire-retarded PET formulations - relationship between thermal degradation behaviour and fire-retardant action

    Get PDF
    Many types of fire-retardants are used in poly(ethylene terephthalate), PET, formulations, and two commercial fire retardants, Ukanol(TM) and Phosgard(TM), have been shown to improve significantly PET flame-retardancy when used as comonomers. Phosgard incorporates a phosphorus atom within the main chain whereas Ukanol incorporates a phosphorus atom as a pendent substituent. Despite their acknowledged effectiveness, the mode of action of these fire retardants remains unclear, and in this paper we present a comparison of the overall thermal degradation behaviour of PET and Ukanol and Phosgard fire retarded formulations. DSC and particularly TGA data show that both Ukanol and Phosgard have some stabilising influence on PET degradation, especially under oxidative conditions. TGA and pyrolysis experiments both clearly indicate that neither additive acts as a char promoter. Only the Phosgard formulation shows any release of volatile phosphorus species which could act in the gas phase. On the other hand, the most striking feature of the pyrolysis experiments is the macroscopic structure of the chars produced by the fire-retarded formulations, which hints at their fire-retardancy action - an open-cell charred foam was obtained upon charring at 400°C or 600°C. This foaming layer between the degrading melt and the flame would lower the amount of fuel available for combustion, and would also limit the feedback of heat to the condensed phase

    Application of the European Regional Seas Ecosystem Model (ERSEM) to assessing the eutrophication status in the OSPAR Maritime Area, with particular reference to nutrient discharges from Scottish salmonid aquaculture

    Get PDF
    Aquaculture production of salmonids in Scotland has grown over the last 15 years, exceeded 150,000 tonnes in 2001. There have been conflicting views as to the likely ecological impact of nutrient discharges from this activity. Whilst quantitative assessments of aquaculture nutrient discharges have been carried out, the debate regarding possible eutrophication impacts of these discharges has so far been largely speculative. In order to provide a quantitative basis for this discussion, a marine ecosystem model was used to simulate the consequences of a 50% reduction in aquaculture nutrient discharges, and the results are presented here

    Child development and the aims of road safety education

    Get PDF
    Pedestrian accidents are one of the most prominent causes of premature injury, handicap and death in the modern world. In children, the problem is so severe that pedestrian accidents are widely regarded as the most serious of all health risks facing children in developed countries. Not surprisingly, educational measures have long been advocated as a means of teaching children how to cope with traffic and substantial resources have been devoted to their development and provision. Unfortunately, there seems to be a widespread view at the present time that education has not achieved as much as had been hoped and that there may even be quite strict limits to what can be achieved through education. This would, of course, shift the emphasis away from education altogether towards engineering or urban planning measures aimed at creating an intrinsically safer environment in which the need for education might be reduced or even eliminated. However, whilst engineering measures undoubtedly have a major role to play in the effort to reduce accidents, this outlook is both overly optimistic about the benefits of engineering and overly pessimistic about the limitations of education. At the same time, a fresh analysis is clearly required both of the aims and methods of contemporary road safety education. The present report is designed to provide such an analysis and to establish a framework within which further debate and research can take place

    Continuing professional development of early years managers and practitioners working with children under 3 years of age: executive summary

    Get PDF
    The Faculty of Education at the University of Strathclyde was commissioned by Learning and Teaching Scotland to undertake research into the continuing professional development provision (CPD) for early years practitioners and managers across Scotland, specifically focusing on provision for thoseworking with children under 3 years of age. The aim of the research was to identify ways in which those working in early years centres might be better supported through effective CPD opportunities, designed to meet the needs ofchildren and their families. The research was carried out between April and September 2008

    Modelling the behaviour of nutrients in the coastal waters of Scotland

    Get PDF
    The overall goal of this project was to provide Scotland with a strategic ecosystem simulation tool for identifying maritime areas which could be at risk of eutrophication. The tool should provide spatially resolved output, and be capable of discriminating between different types and locations of nutrient inputs, so as to enable scenario analyses of different reduction options. The specific aims of the project were firstly to simulate the annual cycles of nutrients and ecological properties of Scottish waters and advise on areas which might suffer from eutrophication, and secondly, to determine the contribution of Scottish nutrient discharges to eutrophication in the OSPAR maritime area as a whole

    A model of meta-population dynamics for North Sea and West of Scotland cod - the dynamic consequences of natal fidelity

    Get PDF
    It is clear from a variety of data that cod (Gadus morhua) in the North Sea do not constitute a homogeneous population that will rapidly redistribute in response to local variability in exploitation. Hence, local exploitation has the potential to deplete local populations, perhaps to the extent that depensation occurs and recovery is impossible without recolonisation from other areas, with consequent loss of genetic diversity. The oceanographic, biological and behavioural processes which maintain the spatial population structures are only partly understood, and one of the key unknown factors is the extent to which codexhibit homing migrations to natal spawning areas. Here, we describe a model comprising 10 interlinked demes of cod in European waters, each representing groups of fish with a common natal origin. The spawning locations of fish in each deme are governed by a variety of rules concerning oceanographic dispersal, migration behaviour and straying. We describe numerical experiments with the model and comparisons with observations, which lead us to conclude that active homing is probably not necessary to explain some of the population structures of European cod. Separation of some sub-populations is possible through distance and oceanographic processes affecting the dispersal of eggs and larvae. However, other evidence suggests that homing may be a necessary behaviour to explain the structure of other sub-populations. Theconsequences for fisheries management of taking into account spatial population structuring are complicated. For example, recovery or recolonisation strategies require consideration not only of mortality rates in the target area for restoration, but also in the source areas for the recruits which may be far removed depending on the oceanography. The model has an inbuilt capability to address issues concerning the effects of climate change, including temperature change, on spatial patterns of recruitment, development and population structure in cod
    corecore