15 research outputs found

    Glycine insertion makes yellow fluorescent protein sensitive to hydrostatic pressure

    Get PDF
    Fluorescent protein-based indicators for intracellular environment conditions such as pH and ion concentrations are commonly used to study the status and dynamics of living cells. Despite being an important factor in many biological processes, the development of an indicator for the physicochemical state of water, such as pressure, viscosity and temperature, however, has been neglected. We here found a novel mutation that dramatically enhances the pressure dependency of the yellow fluorescent protein (YFP) by inserting several glycines into it. The crystal structure of the mutant showed that the tyrosine near the chromophore flipped toward the outside of the ÎČ-can structure, resulting in the entry of a few water molecules near the chromophore. In response to changes in hydrostatic pressure, a spectrum shift and an intensity change of the fluorescence were observed. By measuring the fluorescence of the YFP mutant, we succeeded in measuring the intracellular pressure change in living cell. This study shows a new strategy of design to engineer fluorescent protein indicators to sense hydrostatic pressure

    Decreased circulating branched-chain amino acids are associated with development of Alzheimer’s disease in elderly individuals with mild cognitive impairment

    Get PDF
    BackgroundNutritional epidemiology has shown that inadequate dietary protein intake is associated with poor brain function in the elderly population. The plasma free amino acid (PFAA) profile reflects nutritional status and may have the potential to predict future changes in cognitive function. Here, we report the results of a 2-year interim analysis of a 3-year longitudinal study following mild cognitive impairment (MCI) participants.MethodIn a multicenter prospective cohort design, MCI participants were recruited, and fasting plasma samples were collected. Based on clinical assessment of cognitive function up to 2 years after blood collection, MCI participants were divided into two groups: remained with MCI or reverted to cognitively normal (“MCI-stable,” N = 87) and converted to Alzheimer’s disease (AD) (“AD-convert,” N = 68). The baseline PFAA profile was compared between the two groups. Stratified analysis based on apolipoprotein E Δ4 (APOE Δ4) allele possession was also conducted.ResultsPlasma concentrations of all nine essential amino acids (EAAs) were lower in the AD-convert group. Among EAAs, three branched-chain amino acids (BCAAs), valine, leucine and isoleucine, and histidine (His) exhibited significant differences even in the logistic regression model adjusted for potential confounding factors such as age, sex, body mass index (BMI), and APOE Δ4 possession (p < 0.05). In the stratified analysis, differences in plasma concentrations of these four EAAs were more pronounced in the APOE Δ4-negative group.ConclusionThe PFAA profile, especially decreases in BCAAs and His, is associated with development of AD in MCI participants, and the difference was larger in the APOE Δ4-negative population, suggesting that the PFAA profile is an independent risk indicator for AD development. Measuring the PFAA profile may have importance in assessing the risk of AD conversion in the MCI population, possibly reflecting nutritional status.Clinical trial registration[https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000025322], identifier [UMIN000021965]

    Hydrostatic pressure dependency of the YFP, YFP-1G and YFP-3G.

    No full text
    <p>(A, B, C) Fluorescence spectra of YFP (A), YFP-1G (B), and YFP-3G (C) between 0.1 and 50 MPa (red to blue). The traces represent the averages of six individual trials. All spectra are normalized with the spectrum at 0.1 MPa. (D) Peak shifts of the fluorescence spectra of YFP (red), YFP-1G (blue), and YFP-3G (green) between 0.1 and 50 MPa. (E) Pressure dependence of the peak fluorescence intensities of YFP (red), YFP-1G (blue), and YFP-3G (green) between 0.1 and 50 MPa. The values are normalized with the value at 0.1 MPa. All emission spectra were obtained at 488 nm excitation. Error bars, standard deviation.</p

    One amino acid insertion into YFP.

    No full text
    <p>(A) Structure around the chromophore of YFP (yellow; PDB ID: 1yfp). Red, oxygen. Blue, nitrogen. (B) Schematic drawing of the one amino acid insertion method. (C) Absorbance (left) and emission (right) spectra of the YFP mutants. Orange, wild-type YFP; red, glutamate insertion; blue, histidine insertion; green, methionine insertion; magenta, tyrosine insertion. Emission spectra were obtained at 488 nm excitation. The intensities are normalized as to the peak intensity of wild-type YFP. Concentrations are constant among all data. (D) Spectral shifts of the peak of absorbance (green) and emission (yellow) spectra of the YFP mutants. Lower alphabets stand for the inserted amino acid. Amino acids are arranged according to the van der Waals radius. (E) Fluorescence intensity (red), chloride sensitivity (magenta), and pH sensitivity (orange) of the YFP mutants. The values are normalized as to those of wild-type YFP. Lower alphabets stand for the inserted amino acid. The chloride sensitivity is defined as the ratio of the fluorescence intensities at 0 mM and 200 mM KCl. The pH sensitivity is defined as the ratio of the fluorescence intensities at pH 8.0 and 7.0.</p

    Effect of insertion of 'G' rich fragments into YFP.

    No full text
    <p>(A) Absorbance (blue) and emission (red) spectra of YFP-1G (upper), YFP-3G (middle), and YFP-6G (lower). Green, absorbance of YFP; yellow, emission of YFP. Emission spectra were obtained at 488 nm excitation. The intensities are normalized as to each peak intensity. (B) Spectral shifts of absorbance (green) and emission (yellow), fluorescence intensities (red), and pH dependency (orange) of YFP-nG that is defined as the ratio of the fluorescence intensities at pH 8.0 and 7.0. The intensities are normalized as to wild-type YFP. (C) Fluorescence photographs of YFP and YFP-3G solutions on blue-light (488 nm excitation) transilluminator. The concentrations of proteins were 0.33 mg/ml. We set both samples on side by side, and took the photograph simultaneously.</p

    Crystal structure of YFP inserted 'G' and ‘GGG’.

    No full text
    <p>(A) Overlay structure diagram showing front (left) and side (right) views of YFP (yellow; PDB ID: 1yfp), YFP-1G (cyan), and YFP-3G (green). The missing residues of YFP-3G are indicated by dotted line. (B) Close-up view of the YFP-3G chromophore shown with the 2Fo-Fc density map. (C) Superposition of the structures of YFP (yellow), YFP-1G (cyan), and YFP-3G (green) around the chromophore. Residues interact with the chromophore are shown in stick model with the main-chain backbone trace of ÎČ7, ÎČ10 and ÎČ11. Oxygen and nitrogen atoms are colored in red and blue, respectively. The right panel is viewed from the bottom of the left panel. (D) Water molecules near the chromophore ring. The stick models of YFP-1G (left) and YFP-3G (middle) and YFP (right) are colored in cyan, green and yellow, respectively. YFP-1G and YFP-3G are shown with the 2Fo-Fc density map. Water molecules are represented by red ball. The arrows indicate water molecules filling the space where Tyr145 of YFP was located. Oxygen and nitrogen atoms are colored in red and blue, respectively.</p
    corecore