51 research outputs found

    Morphological and mineral features of nZVI induced precipitation on quartz particles

    Get PDF
    Nano Zero-Valent Iron (nZVI) is a versatile nanomaterial that can not only efficiently remove contaminants in soil, but also improve the soil’s geotechnical strength by changing their physicochemical properties. Inert solid mineral particles are the most common ingredients in soils, they present universal surface modification after the nZVI treatment. This study presents an investigation on the morphological and mineral features of nZVI induced iron mineral precipitations on quartz particles. Lead was employed as the artificial contaminant, while quartz was used to mimic the inert solid mineral particles in soil. Scanning Electron Microscope (SEM), Digital Image Analysis (DIA), Transmission Electron Microscopy (TEM), laser particle size analyzer, X-ray diffraction (XRD) and Raman spectrum were carried out for the characterization. The results indicate that iron minerals precipitated heterogeneously on the surface of quartz particles with plush-like and flake-like structure. They are made of deuterogenic plumbiferous minerals and ferriferous minerals. XRD analysis demonstrated that these minerals are amorphous. The curly flake-like mineral clusters were scatteredly distributed on the surface of quartz along with the of corroded nZVI aggregation. The thickness of the curly flake-like precipitation varied from 20 nm to 60 nm, and 20 nm to 35 nm for the plush-like precipitation. The generation of these iron mineral precipitations led to a slight increase in the average particle size and a decrease in the surface area of the soil. However, no clear difference in the shape and roughness of quartz was found after the nZVI treatment. This study is provided to improve the understanding of mass transfer from nZVI to inert solid particles in soil and its effect in soil improvement

    Microstructure and morphological characterization of lead-contaminated clay with nanoscale zero-valent iron (nZVI) treatment

    Get PDF
    The increasing use of nanoscale zero-valent iron (nZVI) for soil and groundwater remediation has raised concerns about its potential effect on soil properties. Numerous laboratory and field studies have demonstrated its excellent capability to immobilize contaminants and enhance contaminated soil. However, a few studies have shed light on the changes in the microstructure and morphology of the soil due to nZVI treatment. This study explores the variation in particle morphology and microstructure in nZVI-treated soil. A series of microscale experiments, including field emission scanning electron microscopy (FESEM), particle size analysis, mercury injection porosimetry (MIP), optical microscopic analysis, and particle shape tests, were conducted on nZVI-treated samples. The dosages of nZVI used were 0%, 0.2%, 1%, 5%, and 10% of the contaminated soil. Morphological characterization suggested that the addition of nZVI resulted in the occurrence of larger-sized particles, on-particle branched structures, finer pore size distribution, aggregation, and a flocculent network in the soil structure. The aggregated and bonded soil particles via nZVI could be one of the mechanisms for its variation in geotechnical characteristics. The findings of this study may improve our understanding of soil improvement using nZVI treatment

    Simultaneous stabilization of Pb and improvement of soil strength using nZVI

    Get PDF
    This study demonstrates the feasibility of nanoscale Zero-Valent Iron (nZVI) for simultaneous stabilization of Pb and improvement of soil strength via batch experiments. The soil samples were prepared using slurry and pre-consolidation method at nZVI doses of 0.2%, 1%, 5%, and 10% (by dry weight). The physicochemical and geotechnical properties of Pb-contaminated soil treated by nZVI were analyzed. The results indicate that the contamination of Pb(II) resulted in a notable reduction in the undrained shear strength of soil from 16.85 kPa to 7.25 kPa. As expected, the Pb in exchangeable and carbonate-bound fractions decreased significantly with the increasing doses of nZVI. Meanwhile, the undrained shear strength of Pb-contaminated soil enhanced substantially as the increase of nZVI, from 25.83 kPa (0.2% nZVI treatment) to 69.33 kPa (10% nZVI treatment). An abundance of bubbles, generated from the oxidation of nZVI, was recorded. The mechanisms for simultaneous stabilization of Pb and soil improvement primarily include: 1) the precipitation and transformation of Pb-/Fe-hydrated oxides on the soil particles and their induced bounding effects; 2) the increased drainage capability of soil as the occupation of nZVI aggregates and bubbles in the macropores space and 3) the lower soil density derived from the increase in microbubbles retained in the soil. This study is provided to facilitate the application of nZVI in the redevelopment of contaminated soil

    Drivers of vegetation and soil determine natural regeneration of a single plantation at different slope positions

    Get PDF
    Promoting natural regeneration in artificial forest ecosystems is crucial for sustainable management. Understanding the fundamental mechanisms and drivers of tree regeneration is the prerequisite for promoting it effectively. This study worked with Larix principis-rupprechtii, a species considered difficult to regenerate. Twenty-four sample plots measuring 30 m × 30 m were established, with eight plots at each of the lower, middle, and upper slope positions, respectively. Field investigation and multivariate analysis were performed to uncover the regeneration traits in the plantations with abundant seedlings on the continuous slope. The results revealed that ground diameter and height of the regeneration (RGD and RH) were larger at the lower slope, with significant positive correlations to available nitrogen (contribution rate, CR: 0.858) and slope (CR: 0.652). In contrast, regeneration density (RD), representing the quantity of regeneration, was greater at the middle slope. Its significant impact factors were slope position (CR: −0.648) and herb diversity, represented by Pielou index (CR: 0.961). Stand density had a significant negative effect on regeneration, particularly at the upper slope, with CRs of −0.842 and −0.764 to RGD/RH and RD, respectively. Common contribution was found among the factors, with the largest contribution groups being the topographical and soil factors (CR: 0.358). These findings provide valuable insights into the single species regeneration progress on northern mountainous slopes and offer essential information for developing facilitation methods for the natural regeneration in artificial forests

    Early Events Associated with Infection of Epstein-Barr Virus Infection of Primary B-Cells

    Get PDF
    Epstein Barr virus (EBV) is closely associated with the development of a vast number of human cancers. To develop a system for monitoring early cellular and viral events associated with EBV infection a self-recombining BAC containing 172-kb of the Epstein Barr virus genome BAC-EBV designated as MD1 BAC (Chen et al., 2005, J.Virology) was used to introduce an expression cassette of green fluorescent protein (GFP) by homologous recombination, and the resultant BAC clone, BAC-GFP-EBV was transfected into the HEK 293T epithelial cell line. The resulting recombinant GFP EBV was induced to produce progeny virus by chemical inducer from the stable HEK 293T BAC GFP EBV cell line and the virus was used to immortalize human primary B-cell as monitored by green fluorescence and outgrowth of the primary B cells. The infection, B-cell activation and cell proliferation due to GFP EBV was monitored by the expression of the B-cell surface antigens CD5, CD10, CD19, CD23, CD39, CD40 , CD44 and the intercellular proliferation marker Ki-67 using Flow cytometry. The results show a dramatic increase in Ki-67 which continues to increase by 6–7 days post-infection. Likewise, CD40 signals showed a gradual increase, whereas CD23 signals were increased by 6–12 hours, maximally by 3 days and then decreased. Monitoring the viral gene expression pattern showed an early burst of lytic gene expression. This up-regulation of lytic gene expression prior to latent genes during early infection strongly suggests that EBV infects primary B-cell with an initial burst of lytic gene expression and the resulting progeny virus is competent for infecting new primary B-cells. This process may be critical for establishment of latency prior to cellular transformation. The newly infected primary B-cells can be further analyzed for investigating B cell activation due to EBV infection

    Original Article Manic fringe inhibits tumor growth by suppressing Notch3 degradation in lung cancer

    No full text
    Abstract: Notch signaling plays an essential role in development as well as cancer. We have previously shown that Notch3 is important for lung cancer growth and survival. Notch receptors are activated through the interaction with their ligands, resulting in proteolytic cleavage of the receptors. This interaction is modulated by Fringe, a family of fucose-specific β1,3 N-acetylglucosaminyltransferases that modify the extracellular subunit of Notch receptors. Studies in developmental models showed that Fringe enhances Notch's response to Delta ligands at the expense of Jagged ligands. We observed that Manic Fringe expression is down-regulated in lung cancer. Since Jagged1, a known ligand for Notch3, is often over-expressed in lung cancer, we hypothesized that Fringe negatively regulates Notch3 activation. In this study, we show that re-expression of Manic Fringe down-regulates Notch3 target genes HES1 and HeyL and reduces tumor phenotype in vitro and in vivo. The mechanism for this phenomenon appears to be related to modulation of Notch3 protein stability. Proteasome inhibition reverses Manic Fringe-induced protein turnover. Taken together, our data provide the first evidence that Manic Fringe functions as a tumor suppressor in the lung and that the mechanism of its anti-tumor activity is mediated by inhibition of Notch3 activation

    Geoenvironmental characteristics of bisphenol A contaminated soil after persulfate treatment with different activation/enhancement methods.

    No full text
    Persulfate (PSF) is a strong oxidant that has been used extensively in the In-Situ Chemical Oxidation (ISCO) technology. The geoenvironmental impact of PSF treatment is barely investigated. This situation should be carefully considered as it may affect the reutilization of contaminated soil as engineering materials. This paper studied the removal of bisphenol A (BPA) by PSF with Nano Zero-Valent Iron (nZVI) and percarbonate (SPC) activated/enhanced and their subsequent impacts on the engineering properties of soil. The physicochemical and geotechnical properties of soils before and after treatment were evaluated using batch experiments. The results indicate that the introduced pristine PSF can be activated by some naturally occurring matters and subsequently lead to the mineralization of BPA. Both non-activated PSF and activated/enhanced PSF treatment led to the soil improvement in the undrained shear strength at different degrees. The primary mechanism of soil improvement is ascribed to the heterogeneous sulfate and/or carbonate precipitation. Meanwhile, Ca2+ in the pore fluid played a significant role in the enhancement of the soil strength. A conclusion was drawn that the treatment of both non-activated PSF, nZVI- and SPC-activated PSF treatment can achieve removal of BPA and soil improvement in the short-term simultaneously. This study can improve the PSF-involved remediation of brownfields and dredged sediments for a sustainable and low-carbon society

    Metagenomics Analysis of Microbial Species and Antibiotic Resistance Genes (ARGs) in Untreated Wastewater from Different Types of Hospitals in Hangzhou

    No full text
    Antibiotic resistance genes (ARGs) are contaminants that can propagate through a variety of environmental media. They contribute to an increase in the number of antibiotic-resistant microbes and thereby pose a danger to human health. Discharge from hospitals is the most significant contributor of ARGs and antibiotic-resistant bacteria to the natural environment. A comprehensive understanding of the microbiological structure and the distribution of ARGs in hospital wastewater can facilitate appropriate treatment of such wastewater and can improve our understanding of the pathophysiology of several epidemic illnesses. In this work, metagenomics techniques were used to compare the microbial species and ARGs in a control group with those in untreated wastewater from three types of hospitals (a general hospital, a hospital of traditional Chinese medicine, and an oral specialty hospital). The microbiota found in the hospital wastewater represented 6,415 species and 244 phyla. The composition of the bacterial community in the wastewater from the three hospitals was significantly different from that in the control group. The ARGs in the samples were also analyzed using the Antibiotic Resistance Genes Database (ARDB) and Comprehensive Antibiotic Resistance Database (CARD). Finally, the link between abundant species and ARGs in the samples was examined. The findings of this study indicate that a connection exists between the microbial species and the ARG composition found in the wastewater samples. A variety of distinct genera of ARGs, each having their own unique correlations, have been found in wastewater from various hospitals. Consequently, the ARGs and microbial species found in the untreated wastewater from various hospitals have unique characteristics. Therefore, more detailed protocols need to be established to treat wastewater from various types of hospitals. Further studies should examine whether a connection exists between the various microbial species found in the wastewater of various types of hospitals and certain illnesses

    Spring floods and their major influential factors in the upper reaches of Jinsha River basin during 2001–2020

    No full text
    Study region: The upper reaches of Jinsha River basin (UJSB) in the northeastern Tibetan Plateau. Study focus: Spring floods in the UJSB have posed increasingly severe challenges to reservoirs operation and water resources management due to increased climatic variability under global warming. In this study, spring floods in the region were investigated for 2001–2020 based on station data and multisource remote sensing products. We seek to understand: 1) the characteristics including the peaks, the frequency, and duration of spring floods, 2) how snowfall and rainfall affect spring floods. New hydrological insights for the region: Late May has seen most of the highest spring flood discharge, while some springs have experienced multiple peaks. Extreme spring floods were identified in the years 2012, 2013, 2019, and 2020, with the highest peak discharge (1365.83 m3/s) and longest flood duration (47 days) in 2019. Spring snowmelt dominated the extreme spring floods in most years while the floods in 2012 and 2020 were results of combined snowmelt and rainfall. We defined Snow Water Volume (SWV) as an indicator of the precondition for high spring flood. The key regions contributing to spring floods in the UJSB were concentrated around the Tongtianhe sub-basin and the northern parts of Batang–Zhimenda sub-basin where the SWV was large. The enhanced Westerly jets in winters brought about large snowfall and extended snow cover in the UJSB which can be released as floods triggered by rapid increase in air temperature in the coming spring
    • …
    corecore