100 research outputs found

    Pulmonary Image Segmentation and Registration Algorithms: Towards Regional Evaluation of Obstructive Lung Disease

    Get PDF
    Pulmonary imaging, including pulmonary magnetic resonance imaging (MRI) and computed tomography (CT), provides a way to sensitively and regionally measure spatially heterogeneous lung structural-functional abnormalities. These unique imaging biomarkers offer the potential for better understanding pulmonary disease mechanisms, monitoring disease progression and response to therapy, and developing novel treatments for improved patient care. To generate these regional lung structure-function measurements and enable broad clinical applications of quantitative pulmonary MRI and CT biomarkers, as a first step, accurate, reproducible and rapid lung segmentation and registration methods are required. In this regard, we first developed a 1H MRI lung segmentation algorithm that employs complementary hyperpolarized 3He MRI functional information for improved lung segmentation. The 1H-3He MRI joint segmentation algorithm was formulated as a coupled continuous min-cut model and solved through convex relaxation, for which a dual coupled continuous max-flow model was proposed and a max-flow-based efficient numerical solver was developed. Experimental results on a clinical dataset of 25 chronic obstructive pulmonary disease (COPD) patients ranging in disease severity demonstrated that the algorithm provided rapid lung segmentation with high accuracy, reproducibility and diminished user interaction. We then developed a general 1H MRI left-right lung segmentation approach by exploring the left-to-right lung volume proportion prior. The challenging volume proportion-constrained multi-region segmentation problem was approximated through convex relaxation and equivalently represented by a max-flow model with bounded flow conservation conditions. This gave rise to a multiplier-based high performance numerical implementation based on convex optimization theories. In 20 patients with mild- to-moderate and severe asthma, the approach demonstrated high agreement with manual segmentation, excellent reproducibility and computational efficiency. Finally, we developed a CT-3He MRI deformable registration approach that coupled the complementary CT-1H MRI registration. The joint registration problem was solved by exploring optical-flow techniques, primal-dual analyses and convex optimization theories. In a diverse group of patients with asthma and COPD, the registration approach demonstrated lower target registration error than single registration and provided fast regional lung structure-function measurements that were strongly correlated with a reference method. Collectively, these lung segmentation and registration algorithms demonstrated accuracy, reproducibility and workflow efficiency that all may be clinically-acceptable. All of this is consistent with the need for broad and large-scale clinical applications of pulmonary MRI and CT

    Imaging how and where we breathe oxygen: Another Big Short?

    Get PDF
    The Big Short tells the story of a small group of skeptics who profited from the financial crisis in 2007 by betting against collateralized (mortgage) debt obligations (CDO). Importantly, the novel paints a clear picture of the eccentric nature of contrarians who think divergently and against the grain or bet against an accepted truth or “sure” thing. In a similar manner, Ishii and co-workers’ recent work describes their team’s development of a pulmonary imaging technology that provides divergent and disruptive in vivo lung measurements of oxygen partial pressure in the context of the prevailing and longstanding consensus around FEV1 as the definitive diagnostic of chronic lung disease. The Big Short tells the story of a small group of skeptics who profited from the financial crisis in 2007 by betting against collateralized (mortgage) debt obligations (CDO). Importantly, the novel paints a clear picture of the eccentric nature of contrarians who think divergently and against the grain or bet against an accepted truth or “sure” thing. In a similar manner, Ishii and co-workers’ recent work describes their team’s development of a pulmonary imaging technology that provides divergent and disruptive in vivo lung measurements of oxygen partial pressure in the context of the prevailing and longstanding consensus around FEV1 as the definitive diagnostic of chronic lung disease

    Accelerated 129Xe MRI morphometry of terminal airspace enlargement: Feasibility in volunteers and those with alpha-1 antitrypsin deficiency

    Get PDF
    PURPOSE: Multi-b diffusion-weighted hyperpolarized inhaled-gas MRI provides imaging biomarkers of terminal airspace enlargement including ADC and mean linear intercept (L METHODS: We evaluated multi-b (0, 12, 20, 30, and 45.5 s/cm RESULTS: For the HV subgroup, mean differences of 5%, 2%, and 8% were observed between fully sampled and undersampled k-space for ADC, L CONCLUSIONS: Accelerated multi-b diffusion-weighte

    Ventilation Heterogeneity in Ex-smokers without Airflow Limitation.

    Get PDF
    RATIONALE AND OBJECTIVES: Hyperpolarized (3)He magnetic resonance imaging (MRI) ventilation abnormalities are visible in ex-smokers without airflow limitation, but the clinical relevance of this is not well-understood. Our objective was to phenotype healthy ex-smokers with normal and abnormally elevated ventilation defect percent (VDP). MATERIALS AND METHODS: Sixty ex-smokers without airflow limitation provided written informed consent to (3)He MRI, computed tomography (CT), and pulmonary function tests in a single visit. (3)He MRI VDP and apparent diffusion coefficients (ADCs) were measured for whole-lung and each lung lobe as were CT measurements of emphysema (relative area [RA] with attenuation ≀-950 HU, RA950) and airway morphology (wall area percent [WA%], lumen area [LA] and LA normalized to body surface area [LA/BSA]). RESULTS: In 42 ex-smokers, there was abnormally elevated VDP and no significant differences for pulmonary function, RA950, or airway measurements compared to 18 ex-smokers with normal VDP. Ex-smokers with abnormally elevated VDP reported significantly greater (3)He ADC in the apical lung (right upper lobe [RUL], P = .02; right middle lobe [RML], P = .04; and left upper lobe [LUL], P = .009). Whole lung (r = 0.40, P = .001) and lobar VDP (RUL, r = 0.32, P = .01; RML, r = 0.46, P = .002; right lower lobe [RLL], r = 0.38, P = .003; LUL, r = 0.35, P = .006; and left lower lobe, r = 0.37, P = .004) correlated with regional (3)He ADC. Although whole-lung VDP and CT airway morphology measurements were not correlated, regional VDP was correlated with RUL LA (r = -0.37, P = .004), LA/BSA (r = -0.42, P = .0008), RLL WA% (r = 0.28, P = .03), LA (r = -0.28, P = .03), and LA/BSA (r = -0.37, P = .004). CONCLUSIONS: Abnormally elevated VDP in ex-smokers without airflow limitation was coincident with very mild emphysema detected using MRI and regional airway remodeling detected using CT representing a subclinical obstructive lung disease phenotype

    Oscillometry and pulmonary MRI measurements of ventilation heterogeneity in obstructive lung disease: Relationship to quality of life and disease control

    Get PDF
    Ventilation heterogeneity is a hallmark finding in obstructive lung disease and may be evaluated using a variety of methods, including multiple-breath gas washout and pulmonary imaging. Such methods provide an opportunity to better understand the relationships between structural and functional abnormalities in the lungs, and their relationships with important clinical outcomes. We measured ventilation heterogeneity and respiratory impedance in 100 subjects [50 patients with asthma, 22 ex-smokers, and 28 patients with chronic obstructive pulmonary disease (COPD)] using oscillometry and hyperpolarize

    Hierarchical Feature Alignment Network for Unsupervised Video Object Segmentation

    Full text link
    Optical flow is an easily conceived and precious cue for advancing unsupervised video object segmentation (UVOS). Most of the previous methods directly extract and fuse the motion and appearance features for segmenting target objects in the UVOS setting. However, optical flow is intrinsically an instantaneous velocity of all pixels among consecutive frames, thus making the motion features not aligned well with the primary objects among the corresponding frames. To solve the above challenge, we propose a concise, practical, and efficient architecture for appearance and motion feature alignment, dubbed hierarchical feature alignment network (HFAN). Specifically, the key merits in HFAN are the sequential Feature AlignMent (FAM) module and the Feature AdaptaTion (FAT) module, which are leveraged for processing the appearance and motion features hierarchically. FAM is capable of aligning both appearance and motion features with the primary object semantic representations, respectively. Further, FAT is explicitly designed for the adaptive fusion of appearance and motion features to achieve a desirable trade-off between cross-modal features. Extensive experiments demonstrate the effectiveness of the proposed HFAN, which reaches a new state-of-the-art performance on DAVIS-16, achieving 88.7 J&F\mathcal{J}\&\mathcal{F} Mean, i.e., a relative improvement of 3.5% over the best published result.Comment: Accepted by ECCV-202

    Pulmonary Imaging Biomarkers of Gas Trapping and Emphysema in COPD: (3)He MR Imaging and CT Parametric Response Maps

    Get PDF
    PURPOSE: To directly compare magnetic resonance (MR) imaging and computed tomography (CT) parametric response map (PRM) measurements of gas trapping and emphysema in ex-smokers both with and without chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS: Participants provided written informed consent to a protocol that was approved by a local research ethics board and Health Canada and was compliant with the HIPAA (Institutional Review Board Reg. #00000940). The prospectively planned study was performed from March 2014 to December 2014 and included 58 ex-smokers (mean age, 73 years ± 9) with (n = 32; mean age, 74 years ± 7) and without (n = 26; mean age, 70 years ± 11) COPD. MR imaging (at functional residual capacity plus 1 L), CT (at full inspiration and expiration), and spirometry or plethysmography were performed during a 2-hour visit to generate ventilation defect percent (VDP), apparent diffusion coefficient (ADC), and PRM gas trapping and emphysema measurements. The relationships between pulmonary function and imaging measurements were determined with analysis of variance (ANOVA), Holm-Bonferroni corrected Pearson correlations, multivariate regression modeling, and the spatial overlap coefficient (SOC). RESULTS: VDP, ADC, and PRM gas trapping and emphysema (ANOVA, P \u3c .001) measurements were significantly different in healthy ex-smokers than they were in ex-smokers with COPD. In all ex-smokers, VDP was correlated with PRM gas trapping (r = 0.58, P \u3c .001) and with PRM emphysema (r = 0.68, P \u3c .001). VDP was also significantly correlated with PRM in ex-smokers with COPD (gas trapping: r = 0.47 and P = .03; emphysema: r = 0.62 and P \u3c .001) but not in healthy ex-smokers. In a multivariate model that predicted PRM gas trapping, the forced expiratory volume in 1 second normalized to the forced vital capacity (standardized coefficients [ÎČS] = -0.69, P = .001) and airway wall area percent (ÎČS = -0.22, P = .02) were significant predictors. PRM emphysema was predicted by the diffusing capacity for carbon monoxide (ÎČS = -0.29, P = .03) and VDP (ÎČS = 0.41, P = .001). Helium 3 ADC values were significantly elevated in PRM gas-trapping regions (P \u3c .001). The spatial relationship for ventilation defects was significantly greater with PRM gas trapping than with PRM emphysema in patients with mild (for gas trapping, SOC = 36% ± 28; for emphysema, SOC = 1% ± 2; P = .001) and moderate (for gas trapping, SOC = 34% ± 28; for emphysema, SOC = 7% ± 15; P = .006) COPD. For severe COPD, the spatial relationship for ventilation defects with PRM emphysema (SOC = 64% ± 30) was significantly greater than that for PRM gas trapping (SOC = 36% ± 18; P = .01). CONCLUSION: In all ex-smokers, ADC values were significantly elevated in regions of PRM gas trapping, and VDP was quantitatively and spatially related to both PRM gas trapping and PRM emphysema. In patients with mild to moderate COPD, VDP was related to PRM gas trapping, whereas in patients with severe COPD, VDP correlated with both PRM gas trapping and PRM emphysema

    A review on the usability,flexibility, affinity, and affordability of virtual technology for rehabilitation training of upper limb amputees

    Get PDF
    (1) Background: Prosthetic rehabilitation is essential for upper limb amputees to regain their ability to work. However, the abandonment rate of prosthetics is higher than 50% due to the high cost of rehabilitation. Virtual technology shows potential for improving the availability and cost-effectiveness of prosthetic rehabilitation. This article systematically reviews the application of virtual technology for the prosthetic rehabilitation of upper limb amputees.(2) Methods: We followed PRISMA review guidance, STROBE, and CASP to evaluate the included articles. Finally, 17 articles were screened from 22,609 articles.(3) Results: This study reviews the possible benefits of using virtual technology from four aspects: usability, flexibility, psychological affinity, and long-term affordability. Three significant challenges are also discussed: realism, closed-loop control, and multi-modality integration.(4) Conclusions: Virtual technology allows for flexible and configurable control rehabilitation, both during hospital admissions and after discharge, at a relatively low cost. The technology shows promise in addressing the critical barrier of current prosthetic training issues, potentially improving the practical availability of prosthesis techniques for upper limb amputees

    Development of a pulmonary imaging biomarker pipeline for phenotyping of chronic lung disease

    Get PDF
    We designed and generated pulmonary imaging biomarker pipelines to facilitate high-throughput research and point-of-care use in patients with chronic lung disease. Image processing modules and algorithm pipelines were embedded within a graphical user interface (based on the .NET framework) for pulmonary magnetic resonance imaging (MRI) and x-ray computed-tomography (CT) datasets. The software pipelines were generated using C++ and included: (1) inhale

    Clustered Regularly Interspaced short palindromic repeats-Based Microfluidic System in Infectious Diseases Diagnosis: Current Status, Challenges, and Perspectives

    Get PDF
    Mitigating the spread of global infectious diseases requires rapid and accurate diagnostic tools. Conventional diagnostic techniques for infectious diseases typically require sophisticated equipment and are time consuming. Emerging clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) detection systems have shown remarkable potential as next-generation diagnostic tools to achieve rapid, sensitive, specific, and field-deployable diagnoses of infectious diseases, based on state-of-the-art microfluidic platforms. Therefore, a review of recent advances in CRISPR-based microfluidic systems for infectious diseases diagnosis is urgently required. This review highlights the mechanisms of CRISPR/Cas biosensing and cutting-edge microfluidic devices including paper, digital, and integrated wearable platforms. Strategies to simplify sample pretreatment, improve diagnostic performance, and achieve integrated detection are discussed. Current challenges and future perspectives contributing to the development of more effective CRISPR-based microfluidic diagnostic systems are also proposed
    • 

    corecore