34 research outputs found

    A New Insight into the Development of Novel Anti-Cancer Drugs that Improve the Expression of Mitochondrial Function-Associated Genes

    Get PDF
    Recent analyses of the whole genome sequencing data enable us to predict cancer incidence for healthy people at present. In addition, metabolome analyses rediscovered that “cancer is a metabolic disease”. Importantly, it has been suggested that mitochondrial dysfunction might precede the metabolic change. In this chapter, we would discuss if “cancer is a transcriptional disease”. Analyzing 5′-upstream non-protein-encoding regions of the human mitochondrial function-associated genes, we speculate that mitochondrial functions could be recovered or improved at a transcriptional level. In the near future, novel chemo-/gene-therapies might be applied to treat cancer patient converting cancerous cells into normal differentiated cells

    The possible functions of duplicated ets (GGAA) motifs located near transcription start sites of various human genes

    Get PDF
    Transcription is one of the most fundamental nuclear functions and is an enzyme complex-mediated reaction that converts DNA sequences into mRNA. Analyzing DNA sequences of 5′-flanking regions of several human genes that respond to 12-O-tetradecanoyl-phorbol-13-acetate (TPA) in HL-60 cells, we have identified that the ets (GGAA) motifs are duplicated, overlapped, or clustered within a 500-bp distance from the most 5′-upstream region of the cDNA. Multiple protein factors including Ets family proteins are known to recognize and bind to the GGAA containing sequences. In addition, it has been reported that the ets motifs play important roles in regulation of various promoters. Here, we propose a molecular mechanism, defined by the presence of duplication and multiplication of the GGAA motifs, that is responsible for the initiation of transcription of several genes and for the recruitment of binding proteins to the transcription start site (TSS) of TATA-less promoters

    Gene Expression and Regulation in Mammalian Cells - Transcription From General Aspects

    No full text
    ""Central dogma"" was presented by Dr. Francis Crick 60 years ago. The information of nucleotide sequences on DNAs is transcribed into RNAs by RNA polymerases. We learned the mechanisms of how transcription determines function of proteins and behaviour of cells and even how it brings appearances of organisms. This book is intended for scientists and medical researchers especially who are interested in the relationships between transcription and human diseases. This volume consists of an introductory chapter and 14 chapters, divided into 4 parts. Each chapter is written by experts in the basic scientific field. A collection of articles presented by active and laboratory-based investigators provides recent advances and progresses in the field of transcriptional regulation in mammalian cells

    Introductory Chapter: Gene Expression in Eukaryotic Cells

    No full text
    corecore