126 research outputs found

    Enantioselective Narasaka-Heck Cyclizations:Synthesis of Tetrasubstituted Nitrogen-Bearing Stereocenters

    Get PDF
    A SPINOL-derived P,N-ligand system enables Pd-catalyzed 5-exo cyclization of oxime esters with trisubstituted alkenes to generate dihydropyrroles in up to 86% yield and 95 : 5 e.r.</p

    Resolving the physics of Quasar Lyα\alpha Nebulae (RePhyNe): I. Constraining Quasar host halo masses through Circumgalactic Medium kinematics

    Full text link
    Lyα\alpha nebulae ubiquitously found around z>2 quasars can supply unique constraints on the properties of the Circumgalactic Medium, such as its density distribution, provided the quasar halo mass is known. We present a new method to constrain quasar halo masses based on the line-of-sight velocity dispersion maps of Lyα\alpha nebulae. By using MUSE-like mock observations obtained from cosmological hydrodynamic simulations under the assumption of maximal quasar fluorescence, we show that the velocity dispersion radial profiles of Lyα\alpha-emitting gas are strongly determined by gravity and that they are thus self-similar with respect to halo mass when rescaled by the virial radius. Through simple analytical arguments and by exploiting the kinematics of HeII1640\.A emission for a set of observed nebulae, we show that Lyα\alpha radiative transfer effects plausibly do not change the shape of the velocity dispersion profiles but only their normalisation without breaking their self-similarity. Taking advantage of these results, we define the variable η40−100140−200\eta^{140-200}_{40-100} as the ratio of the median velocity dispersion in two specifically selected annuli and derive an analytical relation between η40−100140−200\eta^{140-200}_{40-100} and the halo mass which can be directly applied to observations. We apply our method to 37 observed quasar Lyα\alpha nebulae at 3<z<4.7 and find that their associated quasars are typically hosted by ~1012.16±0.1410^{12.16 \pm 0.14} M⊙_{\odot} haloes independent of redshift within the explored range. This measurement, which is completely independent of clustering methods, is consistent with the lowest mass estimates based on quasar auto-correlation clustering at z~3 and with quasar-galaxies cross-correlation results.Comment: 23 pages, 13 figures, 2 tables. Accepted for publication in MNRA

    Experiences on corrosion inhibitors for reinforced concrete

    Get PDF
    Corrosion of carbon steel reinforcement is the most important cause of premature failure on reinforced concrete structures. Prevention of corrosion is primarily achieved in the design phase by using high quality concrete and adequate cover. Additional prevention methods are adopted when severe environmental conditions occur or on structures requiring very long service life. Among these methods, corrosion inhibitors seem to offer a simple and cost effective prevention technique. They may be used both as a preventative techniques, if added to fresh concrete, and as a repair system, if applied on hardened concrete. The performance of corrosion inhibitors for reinforced concrete structures affected by chloride induced and carbonation corrosion has been studied at PoliLaPP, Laboratory of Corrosion of materials "P. Pedeferri" of the Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, in the last 15 years. Organic commercial admixed corrosion inhibitors delayed the occurrence of chloride induced corrosion. This result is related to two effects: reduction of the rate of chloride transport into concrete and increase of the critical chloride threshold. Commercial migrating corrosion inhibitors (MCI) are able to delay time-to-corrosion of passive rebars in concrete subjected to chlorides ponding; this effect is mainly related to the reduction of chlorides diffusion coefficient. MCI can reduce the corrosion rate after corrosion initiation only in carbonated concrete, nevertheless efficiency is low and residual corrosion rate is not negligible. Commercial MCI can penetrate into concrete mainly through capillary sorption but penetration depth is limited to 20 mm. The results obtained with nitrite-based inhibitor confirm literature data: the inhibitor is effective if the molar ratio [NO2 ]/[Cl ] is higher than 0.5-0.6; in carbonated concrete, due to insufficient amount of inhibitor, no significant effect has been observed on corrosion rate. Among the tested organic substances, compounds containing carboxylic group showed the best results solution tests: pitting potential, time-to-corrosion and critical chloride content are similar to those obtained with sodium nitrite. In concrete tests, only one amine and one amino acid showed good performance increasing the critical chlorides threshold with respect to the reference condition. For carboxylate substances, a strong link was found between inhibiting properties and molecular structure

    Unraveling the knots of gaseous Cosmic Web filaments at z 3 through H-alpha emission observations

    Get PDF
    Our cosmological model predicts that most of the matter in the universe is distributed in a network of filaments - the Cosmic Web - in which galaxies form and evolve. Because most of this material is very diffuse, its direct imaging has for long remained elusive, leaving many questions still open, e.g.: what are the morphological and kinematical properties of the Cosmic Web on both small (kpc) and large (Mpc) scales? How do galaxies get their gas from the Cosmic Web? Here, we tackle these questions with an innovative method to detect in emission the gaseous Cosmic Web using bright quasars as "cosmic flashlights". In particular, we propose to observe in H-alpha emission two fields at z~3 which contain the largest Cosmic Web filaments - over 4 cMpc in length - discovered so far in deep MUSE Ly-alpha emission searches around bright quasars. Because Ly-alpha is affected by radiative transfer which change both its spatial and spectral distribution, non-resonant H-alpha observations are fundamental in order to directly constrain both the filament densities and kinematics. The filament projected angular sizes are perfectly suited for NIRSpec-MOS which can trace the filaments over their full length capturing, at the same time, several embedded galaxies. Our H-alpha observations will probe structures within the filaments on scales smaller than a few physical kpc directly constraining both their density and kinematics. By relating these quantities to the kinematics and distance from associated galaxies, our result will be fundamental to informing a new generation of theoretical and numerical models in order to reveal the physics of intergalactic gas accretion and galactic outflows
    • …
    corecore