570 research outputs found

    KELT-12b: A P ~ 5 day, Highly Inflated Hot Jupiter Transiting a Mildly Evolved Hot Star

    Get PDF
    We announce the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting the mildly evolved, V = 10.64 host star TYC 2619-1057-1. We followed up the initial transit signal in the KELT-North survey data with precise ground-based photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the host star has T_(eff) = 6279 ± 51 K, log g⋆ = 3.89 ± 0.05, [Fe/H] = 0.19^(+0.08)_(-0.09), M* = 1.59^(+0.07)_(-0.09)M⊙, and R* = 2.37 ± 0.17 R⊙. The planetary companion has M_P = 0.95 ± 0.14 M_J, R_P = 1.78^(+0.17)_(-0.16)R_J, log g_P = 2.87^(+0.09)_(-0.10), and density ρ_P = 0.21^(+0.07)_(-0.05) g cm^(−3), making it one of the most inflated giant planets known. Furthermore, for future follow-up, we report a high-precision time of inferior conjunction in BJD_(TDB) of 2,457,083.660459 ± 0.000894 and period of P = 5.0316216 ± 0.000032 days. Despite the relatively large separation of ~0.07 au implied by its ~5.03-day orbital period, KELT-12b receives significant flux of 2.38^(+0.32)_(-0.29) x 10^9 erg s^(−1) cm^(−2) from its host. We compare the radii and insolations of transiting gas giant planets around hot (T_(eff) ⩾ 6250 K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite to search for inflated gas giants in longer-period orbits

    KELT-23Ab: A Hot Jupiter Transiting a Near-solar Twin Close to the TESS and JWST Continuous Viewing Zones

    Get PDF
    We announce the discovery of KELT-23Ab, a hot Jupiter transiting the relatively bright (V = 10.3) star BD+66 911 (TYC 4187-996-1), and characterize the system using follow-up photometry and spectroscopy. A global fit to the system yields host-star properties of T_(eff)=5900±49K, M∗=0.945^(+0.060)_(−0.054)M⊙, R∗=0.995±0.015R⊙, L∗=1.082^(+0.051)_(−0.048)L⊙, logg∗=4.418^(+0.026)_(−0.025) (cgs), and [Fe/H]=−0.105±0.077. KELT-23Ab is a hot Jupiter with a mass of MP=0.938^(+0.045)_(−0.042)M_J, radius of R_P=1.322±0.025RJ, and density of ρ_P=0.504^(+0.038)_(−0.035) g cm^(−3). Intense insolation flux from the star has likely caused KELT-23Ab to become inflated. The time of inferior conjunction is T_0=2458149.40776±0.00091 BJD_(TDB) and the orbital period is P=2.255353^(+0.000031)_(−0.00003) days. There is strong evidence that KELT-23A is a member of a long-period binary star system with a less luminous companion, and due to tidal interactions, the planet is likely to spiral into its host within roughly a gigayear. This system has one of the highest positive ecliptic latitudes of all transiting planet hosts known to date, placing it near the Transiting Planet Survey Satellite and James Webb Space Telescope continuous viewing zones. Thus we expect it to be an excellent candidate for long-term monitoring and follow up with these facilities

    Regulation of store-operated and voltage-operated Ca2+ channels in the proliferation and death of oligodendrocyte precursor cells by golli proteins

    Get PDF
    OPCs (oligodendrocyte precursor cells) express golli proteins which, through regulation of Ca2+ influx, appear to be important in OPC process extension/retraction and migration. The aim of the present study was to examine further the role of golli in regulating OPC development. The effects of golli ablation and overexpression were examined in primary cultures of OPCs prepared from golli-KO (knockout) and JOE (golli J37-overexpressing) mice. In OPCs lacking golli, or overexpressing golli, differentiation induced by growth factor withdrawal was impaired. Proliferation analysis in the presence of PDGF (platelet-derived growth factor), revealed that golli enhanced the mitogen-stimulated proliferation of OPCs through activation of SOCCs (store-operated Ca2+ channels). PDGF treatment induced a biphasic increase in OPC intracellular Ca2+, and golli specifically increased Ca2+ influx during the second SOCC-dependent phase that followed the initial release of Ca2+ from intracellular stores. This store-operated Ca2+ uptake appeared to be essential for cell division, since specific SOCC antagonists completely blocked the effects of PDGF and golli on OPC proliferation. Additionally, in OPCs overexpressing golli, increased cell death was observed after mitogen withdrawal. This phenomenon could be prevented by exposure to VOCC (voltage-operated Ca2+ channel) blockers, indicating that the effect of golli on cell death involved increased Ca2+ influx through VOCCs. The results showed a clear effect of golli on OPC development and support a role for golli in modulating multiple Ca2+-regulatory events through VOCCs and SOCCs. Our results also suggest that PDGF engagement of its receptor resulting in OPC proliferation proceeds through activation of SOCCs

    K2-231 b: A sub-Neptune exoplanet transiting a solar twin in Ruprecht 147

    Get PDF
    We identify a sub-Neptune exoplanet (Rp=2.5±0.2R_p = 2.5 \pm 0.2 R_\oplus) transiting a solar twin in the Ruprecht 147 star cluster (3 Gyr, 300 pc, [Fe/H] = +0.1 dex). The ~81 day light curve for EPIC 219800881 (V = 12.71) from K2 Campaign 7 shows six transits with a period of 13.84 days, a depth of ~0.06%, and a duration of ~4 hours. Based on our analysis of high-resolution MIKE spectra, broadband optical and NIR photometry, the cluster parallax and interstellar reddening, and isochrone models from PARSEC, Dartmouth, and MIST, we estimate the following properties for the host star: M=1.01±0.03M_\star = 1.01 \pm 0.03 M_\odot, R=0.95±0.03R_\star= 0.95 \pm 0.03 R_\odot, and Teff=5695±50T_{\rm eff} = 5695 \pm 50 K. This star appears to be single, based on our modeling of the photometry, the low radial velocity variability measured over nearly ten years, and Keck/NIRC2 adaptive optics imaging and aperture-masking interferometry. Applying a probabilistic mass-radius relation, we estimate that the mass of this planet is Mp=7+53M_p = 7 +5 -3 M_\oplus, which would cause a RV semi-amplitude of K=2±1K = 2 \pm 1 m s1^{-1} that may be measurable with existing precise RV facilities. After statistically validating this planet with BLENDER, we now designate it K2-231 b, making it the second sub-stellar object to be discovered in Ruprecht 147 and the first planet; it joins the small but growing ranks of 23 other planets found in open clusters.Comment: 24 pages, 7 figures, light curve included as separate fil

    The Mass of the White Dwarf Companion in the Self-Lensing Binary KOI-3278: Einstein vs. Newton

    Get PDF
    KOI-3278 is a self-lensing stellar binary consisting of a white-dwarf secondary orbiting a Sun-like primary star. Kruse and Agol (2014) noticed small periodic brightenings every 88.18 days in the Kepler photometry and interpreted these as the result of microlensing by a white dwarf with about 63%\% of the mass of the Sun. We obtained two sets of spectra for the primary that allowed us to derive three sets of spectroscopic estimates for its effective temperature, surface gravity, and metallicity for the first time. We used these values to update the Kruse and Agol (2014) Einsteinian microlensing model, resulting in a revised mass for the white dwarf of 0.5390.020+0.022M0.539^{+0.022}_{-0.020} \, M_{\odot}. The spectra also allowed us to determine radial velocities and derive orbital solutions, with good agreement between the two independent data sets. An independent Newtonian dynamical MCMC model of the combined velocities yielded a mass for the white dwarf of 0.51220.0058+0.0057M0.5122^{+0.0057}_{-0.0058} \, M_{\odot}. The nominal uncertainty for the Newtonian mass is about four times better than for the Einsteinian, ±1.1%\pm 1.1\% vs. ±4.1%\pm 4.1\% and the difference between the two mass determinations is 5.2%5.2 \%. We then present a joint Einsteinian microlensing and Newtonian radial velocity model for KOI-3278, which yielded a mass for the white dwarf of 0.52500.0089+0.0082M0.5250^{+0.0082}_{-0.0089} \, M_{\odot}. This joint model does not rely on any white dwarf evolutionary models or assumptions on the white dwarf mass-radius relation. We discuss the benefits of a joint model of self-lensing binaries, and how future studies of these systems can provide insight into the mass-radius relation of white dwarfs.Comment: ApJ Accepted; 22 Pages, 8 Figures, 6 Tables and 4 Supplementary Table

    Wnt7a Decreases Brain Endothelial Barrier Function Via β-Catenin Activation

    Get PDF
    The blood-brain barrier consists of tightly connected endothelial cells protecting the brain’s microenvironment from the periphery. These endothelial cells are characterized by specific tight junction proteins such as Claudin-5 and Occludin, forming the endothelial barrier. Disrupting these cells might lead to blood-brain barrier dysfunction. The Wnt/β-catenin signaling pathway can regulate the expression of these tight junction proteins and subsequent barrier permeability. The aim of this study was to investigate the in vitro effects of Wnt7a mediated β-catenin signaling on endothelial barrier integrity. Mouse brain endothelial cells, bEnd.3, were treated with recombinant Wnt7a protein or XAV939, a selective inhibitor of Wnt/β-catenin mediated transcription to modulate the Wnt signaling pathway. The involvement of Wnt/HIF1α signaling was investigated by inhibiting Hif1α signaling with Hif1α siRNA. Wnt7a stimulation led to activation and nuclear translocation of β-catenin, which was inhibited by XAV939. Wnt7a stimulation decreased Claudin-5 expression mediated by β-catenin and decreased endothelial barrier formation. Wnt7a increased Hif1α and Vegfa expression mediated by β-catenin. However, Hif1α signaling pathway did not regulate tight junction proteins Claudin-5 and Occludin. Our data suggest that Wnt7a stimulation leads to a decrease in tight junction proteins mediated by the nuclear translocation of β-catenin, which hampers proper endothelial barrier formation. This process might be crucial in initiating endothelial cell proliferation and angiogenesis. Although HIF1α did not modulate the expression of tight junction proteins, it might play a role in brain angiogenesis and underlie pathogenic mechanisms in Wnt/HIF1α signaling in diseases such as cerebral small vessel disease

    Precise breakpoint detection in a patient with 9p- syndrome

    Get PDF
    We present a case of 9p- syndrome with a complex chromosomal event originally characterized by the classical karyotype approach as 46,XX,der(9)t(9;13)(p23;q13). We used advanced technologies (Bionano Genomics genome imaging and 10× Genomics sequencing) to characterize the location of the translocation and accompanying deletion on Chromosome 9 and duplication on Chromosome 13 with single-nucleotide breakpoint resolution. The translocation breakpoint was at Chr 9:190938 and Chr 13:50850492, the deletion at Chr 9:1-190938, and the duplication at Chr 13:50850492-114364328. We identified genes in the deletion and duplication regions that are known to be associated with this patient\u27s phenotype (e.g.

    KELT-23Ab: A Hot Jupiter Transiting a Near-solar Twin Close to the TESS and JWST Continuous Viewing Zones

    Get PDF
    We announce the discovery of KELT-23Ab, a hot Jupiter transiting the relatively bright (V = 10.3) star BD+66 911 (TYC 4187-996-1), and characterize the system using follow-up photometry and spectroscopy. A global fit to the system yields host-star properties of T_(eff)=5900±49K, M∗=0.945^(+0.060)_(−0.054)M⊙, R∗=0.995±0.015R⊙, L∗=1.082^(+0.051)_(−0.048)L⊙, logg∗=4.418^(+0.026)_(−0.025) (cgs), and [Fe/H]=−0.105±0.077. KELT-23Ab is a hot Jupiter with a mass of MP=0.938^(+0.045)_(−0.042)M_J, radius of R_P=1.322±0.025RJ, and density of ρ_P=0.504^(+0.038)_(−0.035) g cm^(−3). Intense insolation flux from the star has likely caused KELT-23Ab to become inflated. The time of inferior conjunction is T_0=2458149.40776±0.00091 BJD_(TDB) and the orbital period is P=2.255353^(+0.000031)_(−0.00003) days. There is strong evidence that KELT-23A is a member of a long-period binary star system with a less luminous companion, and due to tidal interactions, the planet is likely to spiral into its host within roughly a gigayear. This system has one of the highest positive ecliptic latitudes of all transiting planet hosts known to date, placing it near the Transiting Planet Survey Satellite and James Webb Space Telescope continuous viewing zones. Thus we expect it to be an excellent candidate for long-term monitoring and follow up with these facilities
    corecore