509 research outputs found

    Seeing double with K2: Testing re-inflation with two remarkably similar planets around red giant branch stars

    Get PDF
    Despite more than 20 years since the discovery of the first gas giant planet with an anomalously large radius, the mechanism for planet inflation remains unknown. Here, we report the discovery of EPIC228754001.01, an inflated gas giant planet found with the NASA K2 Mission, and a revised mass for another inflated planet, K2-97b. These planets reside on ~9 day orbits around host stars which recently evolved into red giants. We constrain the irradiation history of these planets using models constrained by asteroseismology and Keck/HIRES spectroscopy and radial velocity measurements. We measure planet radii of 1.31 +\- 0.11 Rjup and and 1.30 +\- 0.07 Rjup, respectively. These radii are typical for planets receiving the current irradiation, but not the former, zero age main sequence irradiation of these planets. This suggests that the current sizes of these planets are directly correlated to their current irradiation. Our precise constraints of the masses and radii of the stars and planets in these systems allow us to constrain the planetary heating efficiency of both systems as 0.03% +0.03%/-0.02%. These results are consistent with a planet re-inflation scenario, but suggest the efficiency of planet re-inflation may be lower than previously theorized. Finally, we discuss the agreement within 10% of stellar masses and radii, and planet masses, radii, and orbital periods of both systems and speculate that this may be due to selection bias in searching for planets around evolved stars.Comment: 18 pages, 15 figures, accepted to AJ. Figures 11, 12, and 13 are the key figures of the pape

    K2-231 b: A sub-Neptune exoplanet transiting a solar twin in Ruprecht 147

    Get PDF
    We identify a sub-Neptune exoplanet (Rp=2.5±0.2R_p = 2.5 \pm 0.2 R⊕_\oplus) transiting a solar twin in the Ruprecht 147 star cluster (3 Gyr, 300 pc, [Fe/H] = +0.1 dex). The ~81 day light curve for EPIC 219800881 (V = 12.71) from K2 Campaign 7 shows six transits with a period of 13.84 days, a depth of ~0.06%, and a duration of ~4 hours. Based on our analysis of high-resolution MIKE spectra, broadband optical and NIR photometry, the cluster parallax and interstellar reddening, and isochrone models from PARSEC, Dartmouth, and MIST, we estimate the following properties for the host star: M⋆=1.01±0.03M_\star = 1.01 \pm 0.03 M⊙_\odot, R⋆=0.95±0.03R_\star= 0.95 \pm 0.03 R⊙_\odot, and Teff=5695±50T_{\rm eff} = 5695 \pm 50 K. This star appears to be single, based on our modeling of the photometry, the low radial velocity variability measured over nearly ten years, and Keck/NIRC2 adaptive optics imaging and aperture-masking interferometry. Applying a probabilistic mass-radius relation, we estimate that the mass of this planet is Mp=7+5−3M_p = 7 +5 -3 M⊕_\oplus, which would cause a RV semi-amplitude of K=2±1K = 2 \pm 1 m s−1^{-1} that may be measurable with existing precise RV facilities. After statistically validating this planet with BLENDER, we now designate it K2-231 b, making it the second sub-stellar object to be discovered in Ruprecht 147 and the first planet; it joins the small but growing ranks of 23 other planets found in open clusters.Comment: 24 pages, 7 figures, light curve included as separate fil

    Economic Impact and Social Benefits Study of Coldwater Angling in Minnesota

    Get PDF
    Saint Paul: University of Minnesota Extension Service, Tourism Center.This study was conducted of anglers utilizing Minnesota’s northeast region cold-water fisheries in 2000-2001, and was based upon a staged mail-back questionnaire sent to anglers who had purchased a trout/salmon stamp from the Minnesota DNR. The purpose of this study was to investigate the economic and social benefits of coldwater angling participation in the state of Minnesota. Overall 10,297 questionnaires were mailed, and 3,029 returned for a response rate of 33%. Two null hypotheses guided this study: 1. There are no expenditure differences between the different types of coldwater angling investigated. 2. There are no experience differences between the different types of coldwater anglers. The survey looked at access points; bait used; species preferences; preference for fishing location; angler age, gender and education; trip distance; purpose of anglers’ trips; and numerous other behaviors and preferences. It also assessed the economic impact of anglers on local economies. The report notes that “fishing equipment was the largest expenditure in preparation for the trip (12.57/person/day).Totalexpendituresathomewere12.57/person/day). Total expenditures at home were 33.90 per person per day. The largest expenses en route and onsite were lodging (15.39/person/day),preparedfood(15.39/person/day), prepared food (12.55/person/day), and gas (12.70/person/day)totaling12.70/person/day) totaling 71.31 per person daily. In sum, the typical coldwater angler spent $105.21/day. Overall, anglers were satisfied with their trip, and the quality, size and number of fish caught. The study concludes with the following findings: “There were many differences noted between the five different types of fishing investigated in this study. The differences were substantial, significant, and revealing. The evidence presented strongly argues for rejecting both of the null hypotheses used to guide this research. Therefore, we can state with a high degree of certainty that expenditure differences do exist for anglers between the different types of coldwater angling and that different experiences are sought by anglers engaging in different types of fishing. The research that allowed us to reject both null hypotheses also provides us with some interesting insights into other differences between anglers in the five different fishing types.

    K2-19b and c are in a 3:2 Commensurability but out of Resonance: A Challenge to Planet Assembly by Convergent Migration

    Get PDF
    K2-19b and c were among the first planets discovered by NASA's K2 mission and together stand in stark contrast with the physical and orbital properties of the solar system planets. The planets are between the size of Uranus and Saturn at 7.0 ± 0.2 R⊕ and 4.1 ± 0.2 R⊕, respectively, and reside a mere 0.1% outside the nominal 3:2 mean-motion resonance. They represent a different outcome of the planet formation process than the solar system, as well as the vast majority of known exoplanets. We measured the physical and orbital properties of these planets using photometry from K2, Spitzer, and ground-based telescopes, along with radial velocities from Keck/HIRES. Through a joint photodynamical model, we found that the planets have moderate eccentricities of e ≈ 0.20 and well-aligned apsides Δϖ ≈ 0°. The planets occupy a strictly nonresonant configuration: the resonant angles circulate rather than librate. This defies the predictions of standard formation pathways that invoke convergent or divergent migration, both of which predict Δ ≈ 180° and eccentricities of a few percent or less. We measured masses of M_(p,b) = 32.4 ± 1.7 M⊕ and M_(p,c) = 10.8 ± 0.6 M⊕. Our measurements, with 5% fractional uncertainties, are among the most precise of any sub-Jovian exoplanet. Mass and size reflect a planet's core/envelope structure. Despite having a relatively massive core of M_(core) ≈ 15 M⊕, K2-19b is envelope-rich, with an envelope mass fraction of roughly 50%. This planet poses a challenge to standard models of core-nucleated accretion, which predict that cores ≳10 M⊕ will quickly accrete gas and trigger runaway accretion when the envelope mass exceeds that of the core

    The Discovery of the Long-Period, Eccentric Planet Kepler-88 d and System Characterization with Radial Velocities and Photodynamical Analysis

    Get PDF
    We present the discovery of Kepler-88 d (P_d = 1403±14 , M sin i_d = 970±50M⊕ = 3.05±0.16M_J, e_d = 0.42±0.04) based on six years of radial velocity (RV) follow-up from the W. M. Keck Observatory High Resolution Echelle Spectrometer spectrograph. Kepler-88 has two previously identified planets. Kepler-88 b (KOI-142.01) transits in the NASA Kepler photometry and has very large transit timing variations (TTVs). Nesvorný et al. performed a dynamical analysis of the TTVs to uniquely identify the orbital period and mass of the perturbing planet (Kepler-88 c), which was later was confirmed with RVs from the Observatoire de Haute-Provence (OHP). To fully explore the architecture of this system, we performed photodynamical modeling on the Kepler photometry combined with the RVs from Keck and OHP and stellar parameters from spectroscopy and Gaia. Planet d is not detectable in the photometry, and long-baseline RVs are needed to ascertain its presence. A photodynamical model simultaneously optimized to fit the RVs and Kepler photometry yields the most precise planet masses and orbital properties yet for b and c: P_b = 10.91647±0.00014days, M_b = 9.5±1.2M⊕, P_c = 22.2649±0.0007 days, and M_c = 214.1±5.3M⊕. The photodynamical solution also finds that planets b and c have low eccentricites and low mutual inclination, are apsidally anti-aligned, and have conjunctions on the same hemisphere of the star. Continued RV follow-up of systems with small planets will improve our understanding of the link between inner planetary system architectures and giant planets
    • …
    corecore