4 research outputs found

    On homomorphisms of commutative inverse semigroups

    Get PDF

    Functionals and the Quantum Master Equation

    Full text link
    The quantum master equation is usually formulated in terms of functionals of the components of mappings from a space-time manifold M into a finite-dimensional vector space. The master equation is the sum of two terms one of which is the anti-bracket (odd Poisson bracket) of functionals and the other is the Laplacian of a functional. Both of these terms seem to depend on the fact that the mappings on which the functionals act are vector-valued. It turns out that neither this Laplacian nor the anti-bracket is well-defined for sections of an arbitrary vector bundle. We show that if the functionals are permitted to have their values in an appropriate graded tensor algebra whose factors are the dual of the space of smooth functions on M, then both the anti-bracket and the Laplace operator can be invariantly defined. Additionally, one obtains a new anti-bracket for ordinary functionals.Comment: 21 pages, Late

    On homomorphisms of commutative inverse semigroups

    No full text
    corecore