16 research outputs found
Repulsive Casimir Pistons
Casimir pistons are models in which finite Casimir forces can be calculated
without any suspect renormalizations. It has been suggested that such forces
are always attractive. We present three scenarios in which that is not true.
Two of these depend on mixing two types of boundary conditions. The other,
however, is a simple type of quantum graph in which the sign of the force
depends upon the number of edges.Comment: 4 pages, 2 figures; RevTeX. Minor additions and correction
Index theorems for quantum graphs
In geometric analysis, an index theorem relates the difference of the numbers
of solutions of two differential equations to the topological structure of the
manifold or bundle concerned, sometimes using the heat kernels of two
higher-order differential operators as an intermediary. In this paper, the case
of quantum graphs is addressed. A quantum graph is a graph considered as a
(singular) one-dimensional variety and equipped with a second-order
differential Hamiltonian H (a "Laplacian") with suitable conditions at
vertices. For the case of scale-invariant vertex conditions (i.e., conditions
that do not mix the values of functions and of their derivatives), the constant
term of the heat-kernel expansion is shown to be proportional to the trace of
the internal scattering matrix of the graph. This observation is placed into
the index-theory context by factoring the Laplacian into two first-order
operators, H =A*A, and relating the constant term to the index of A. An
independent consideration provides an index formula for any differential
operator on a finite quantum graph in terms of the vertex conditions. It is
found also that the algebraic multiplicity of 0 as a root of the secular
determinant of H is the sum of the nullities of A and A*.Comment: 19 pages, Institute of Physics LaTe
The equivalence principle at work in radiation from unaccelerated atoms and mirrors
The equivalence principle is a perennial subject of controversy, especially in connection with radiation by a uniformly accelerated classical charge, or a freely falling charge observed by a supported detector. Recently, related issues have been raised in connection with the Unruh radiation associated with accelerated detectors (including two-level atoms and resonant cavities). A third type of system, very easy to analyze because of conformal invariance, is a two-dimensional scalar field interacting with perfectly reflecting boundaries (mirrors). After reviewing the issues for atoms and cavities, we investigate a stationary mirror from the point of view of an accelerated detector in 'Rindler space'. In keeping with the conclusions of earlier authors about the electromagnetic problem, we find that a radiative effect is indeed observed; from an inertial point of view, the process arises from a collision of the negative vacuum energy of Rindler space with the mirror. There is a qualitative symmetry under interchange of accelerated and inertial subsystems (a vindication of the equivalence principle), but it hinges on the accelerated detector's being initially in its own 'Rindler vacuum'. This observation is consistent with the recent work on the Unruh problem
Mathematical Aspects of Vacuum Energy on Quantum Graphs
We use quantum graphs as a model to study various mathematical aspects of the
vacuum energy, such as convergence of periodic path expansions, consistency
among different methods (trace formulae versus method of images) and the
possible connection with the underlying classical dynamics.
We derive an expansion for the vacuum energy in terms of periodic paths on
the graph and prove its convergence and smooth dependence on the bond lengths
of the graph. For an important special case of graphs with equal bond lengths,
we derive a simpler explicit formula.
The main results are derived using the trace formula. We also discuss an
alternative approach using the method of images and prove that the results are
consistent. This may have important consequences for other systems, since the
method of images, unlike the trace formula, includes a sum over special
``bounce paths''. We succeed in showing that in our model bounce paths do not
contribute to the vacuum energy. Finally, we discuss the proposed possible link
between the magnitude of the vacuum energy and the type (chaotic vs.
integrable) of the underlying classical dynamics. Within a random matrix model
we calculate the variance of the vacuum energy over several ensembles and find
evidence that the level repulsion leads to suppression of the vacuum energy.Comment: Fixed several typos, explain the use of random matrices in Section
Bosonization and Scale Invariance on Quantum Wires
We develop a systematic approach to bosonization and vertex algebras on
quantum wires of the form of star graphs. The related bosonic fields propagate
freely in the bulk of the graph, but interact at its vertex. Our framework
covers all possible interactions preserving unitarity. Special attention is
devoted to the scale invariant interactions, which determine the critical
properties of the system. Using the associated scattering matrices, we give a
complete classification of the critical points on a star graph with any number
of edges. Critical points where the system is not invariant under wire
permutations are discovered. By means of an appropriate vertex algebra we
perform the bosonization of fermions and solve the massless Thirring model. In
this context we derive an explicit expression for the conductance and
investigate its behavior at the critical points. A simple relation between the
conductance and the Casimir energy density is pointed out.Comment: LaTex 31+1 pages, 2 figures. Section 3.6 and two references added. To
appear in J. Phys. A: Mathematical and Theoretica
Comment on the sign of the Casimir force
I show that reflection positivity implies that the force between any mirror
pair of charge-conjugate probes of the quantum vacuum is attractive. This
generalizes a recent theorem of Kenneth and Klich to interacting quantum
fields, to arbitrary semiclassical bodies, and to quantized probes with
non-overlapping wavefunctions. I also prove that the torques on
charge-conjugate probes tend always to rotate them into a mirror-symmetric
position.Comment: 13 pages, 1 figure, Latex file. Several points clarified and
expanded, two references added
Non-Equilibrium Quantum Fields in the Large N Expansion
An effective action technique for the time evolution of a closed system
consisting of one or more mean fields interacting with their quantum
fluctuations is presented. By marrying large expansion methods to the
Schwinger-Keldysh closed time path (CTP) formulation of the quantum effective
action, causality of the resulting equations of motion is ensured and a
systematic, energy conserving and gauge invariant expansion about the
quasi-classical mean field(s) in powers of developed. The general method
is exposed in two specific examples, symmetric scalar \l\F^4 theory
and Quantum Electrodynamics (QED) with fermion fields. The \l\F^4 case is
well suited to the numerical study of the real time dynamics of phase
transitions characterized by a scalar order parameter. In QED the technique may
be used to study the quantum non-equilibrium effects of pair creation in strong
electric fields and the scattering and transport processes in a relativistic
plasma. A simple renormalization scheme that makes practical the
numerical solution of the equations of motion of these and other field theories
is described.Comment: 43 pages, LA-UR-94-783 (PRD, in press), uuencoded PostScrip
Relativistic quantum clocks
The conflict between quantum theory and the theory of relativity is
exemplified in their treatment of time. We examine the ways in which their
conceptions differ, and describe a semiclassical clock model combining elements
of both theories. The results obtained with this clock model in flat spacetime
are reviewed, and the problem of generalizing the model to curved spacetime is
discussed, before briefly describing an experimental setup which could be used
to test of the model. Taking an operationalist view, where time is that which
is measured by a clock, we discuss the conclusions that can be drawn from these
results, and what clues they contain for a full quantum relativistic theory of
time.Comment: 12 pages, 4 figures. Invited contribution for the proceedings for
"Workshop on Time in Physics" Zurich 201