8,979 research outputs found

    Modulus Computational Entropy

    Full text link
    The so-called {\em leakage-chain rule} is a very important tool used in many security proofs. It gives an upper bound on the entropy loss of a random variable XX in case the adversary who having already learned some random variables Z1,
,ZℓZ_{1},\ldots,Z_{\ell} correlated with XX, obtains some further information Zℓ+1Z_{\ell+1} about XX. Analogously to the information-theoretic case, one might expect that also for the \emph{computational} variants of entropy the loss depends only on the actual leakage, i.e. on Zℓ+1Z_{\ell+1}. Surprisingly, Krenn et al.\ have shown recently that for the most commonly used definitions of computational entropy this holds only if the computational quality of the entropy deteriorates exponentially in ∣(Z1,
,Zℓ)∣|(Z_{1},\ldots,Z_{\ell})|. This means that the current standard definitions of computational entropy do not allow to fully capture leakage that occurred "in the past", which severely limits the applicability of this notion. As a remedy for this problem we propose a slightly stronger definition of the computational entropy, which we call the \emph{modulus computational entropy}, and use it as a technical tool that allows us to prove a desired chain rule that depends only on the actual leakage and not on its history. Moreover, we show that the modulus computational entropy unifies other,sometimes seemingly unrelated, notions already studied in the literature in the context of information leakage and chain rules. Our results indicate that the modulus entropy is, up to now, the weakest restriction that guarantees that the chain rule for the computational entropy works. As an example of application we demonstrate a few interesting cases where our restricted definition is fulfilled and the chain rule holds.Comment: Accepted at ICTS 201

    Liquidus Tracking: Controlled Rate Vitrification for the Cryopreservation of Larger Volumes and Tissues

    Get PDF
    BACKGROUND: Vitrification of cells or tissue at controlled cooling rates suitable for larger volumes, and with reduced cryoprotectant toxicity. OBJECTIVE: To set out the current understanding of the LiquidusTracking (LT) vitrification technique, and to discuss the challenges and benefits of translating the method into laboratory protocols more generally applicable to meet requirements of large volume and 3-D cryo-banking in the era of regenerative medicine. METHODS: By adding small amounts of cryoprotectants at each step and subsequently cooling the sample just above its freezing point before further increasing CPA concentration, cryoprotectant toxicity is minimized. RESULT: CPA toxicity can be reduced by lowering the temperature. Different manual approaches to LT were evaluated and further improved. CONCLUSIONS: Manual liquidus tracking is complicated and exhibits potential high variability. Nevertheless, this approach offers the possibility of testing several conditions simultaneously and could be used to pre-test conditions prior to automatic LT development

    Neutrino-Neutrino Scattering and Matter-Enhanced Neutrino Flavor Transformation in Supernovae

    Get PDF
    We examine matter-enhanced neutrino flavor transformation (Μτ(ÎŒ)⇌Μe\nu_{\tau(\mu)}\rightleftharpoons\nu_e) in the region above the neutrino sphere in Type II supernovae. Our treatment explicitly includes contributions to the neutrino-propagation Hamiltonian from neutrino-neutrino forward scattering. A proper inclusion of these contributions shows that they have a completely negligible effect on the range of Îœe\nu_e-Μτ(ÎŒ)\nu_{\tau(\mu)} vacuum mass-squared difference, ÎŽm2\delta m^2, and vacuum mixing angle, Ξ\theta, or equivalently sin⁥22Ξ\sin^22\theta, required for enhanced supernova shock re-heating. When neutrino background effects are included, we find that rr-process nucleosynthesis from neutrino-heated supernova ejecta remains a sensitive probe of the mixing between a light Îœe\nu_e and a Μτ(ÎŒ)\nu_{\tau(\mu)} with a cosmologically significant mass. Neutrino-neutrino scattering contributions are found to have a generally small effect on the (ÎŽm2, sin⁥22Ξ)(\delta m^2,\ \sin^22\theta) parameter region probed by rr-process nucleosynthesis. We point out that the nonlinear effects of the neutrino background extend the range of sensitivity of rr-process nucleosynthesis to smaller values of ÎŽm2\delta m^2.Comment: 38 pages, tex, DOE/ER/40561-150-INT94-00-6

    Sustaining entrepreneurial business: a complexity perspective on processes that produce emergent practice

    Get PDF
    This article examines the management practices in an entrepreneurial small firm which sustain the business. Using a longitudinal qualitative case study, four general processes are identified (experimentation, reflexivity, organising and sensing), that together provide a mechanism to sustain the enterprise. The analysis draws on concepts from entrepreneurship and complexity science. We suggest that an entrepreneur’s awareness of the role of these parallel processes will facilitate their approaches to sustaining and developing enterprises. We also suggest that these processes operate in parallel at multiple levels, including the self, the business and inter-firm networks. This finding contributes to a general theory of entrepreneurship. A number of areas for further research are discussed arising from this result

    Writhing Photons and Berry Phases in Diffusive Wave Scattering

    Full text link
    We study theoretically the polarization state of light in multiple scattering media in the limit of weak gradients in refractive index. Linearly polarized photons are randomly rotated due to the Berry phase associated with the scattering path. For circularly polarized light independent speckle patterns are found for the two helical states. The statistics of the geometric phase is related to the writhe distribution of semiflexible polymers such as DNA.Comment: 4 pages, 1 figur

    Resonant Neutrino Spin-Flavor Precession and Supernova Nucleosynthesis and Dynamics

    Get PDF
    We discuss the effects of resonant spin-flavor precession (RSFP) of Majorana neutrinos on heavy element nucleosynthesis in neutrino-heated supernova ejecta and the dynamics of supernovae. In assessing the effects of RSFP, we explicitly include matter-enhanced (MSW) resonant neutrino flavor conversion effects where appropriate. We point out that for plausible ranges of neutrino magnetic moments and proto-neutron star magnetic fields, spin-flavor conversion of Μτ\nu_\tau (or ΜΌ\nu_\mu) with a cosmologically significant mass (1--100 eV) into a light Μˉe\bar \nu_e could lead to an enhanced neutron excess in neutrino-heated supernova ejecta. This could be beneficial for models of rr-process nucleosynthesis associated with late-time neutrino-heated ejecta from supernovae. Similar spin-flavor conversion of neutrinos at earlier epochs could lead to an increased shock reheating rate and, concomitantly, a larger supernova explosion energy. We show, however, that such increased neutrino heating likely will be accompanied by an enhanced neutron excess which could exacerbate the problem of the overproduction of the neutron number N=50N = 50 nuclei in the supernova ejecta from this stage. In all of these scenarios, the average Μˉe\bar\nu_e energy will be increased over those predicted by supernova models with no neutrino mixings. This may allow the SN1987a data to constrain RSFP-based schemes.Comment: Latex file, 33 pages including 11 figures, uses psfig.sty, minor changes about wording and clarification of the text, to be published in Phys. Rev.

    Cultures of caste and rural development in the social network of a south Indian village

    Get PDF
    Cultures of caste in much of rural India have become entangled with institutions of rural development. In community-driven development, emphasis on “local resource persons” and “community spokespersons” has created new opportunities for brokerage and patronage within some villages, which interact with existing forms of authority and community afforded by caste identity and intra-caste headmanship. In this article, we study how these entangled cultures of caste and development translate into social network structures using data on friendship ties from a south Indian village. We find that although caste continues to be important in shaping community structures and leadership in the village’s network, its influence varies across different communities. This fluidity of caste’s influence on community network structures is argued to be the result of multiple distinct yet partially overlapping cultural-political forces, which include sharedness afforded by caste identity and new forms of difference and inequality effected through rural development

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Electron capture on iron group nuclei

    Get PDF
    We present Gamow-Teller strength distributions from shell model Monte Carlo studies of fp-shell nuclei that may play an important role in the pre-collapse evolution of supernovae. We then use these strength distributions to calculate the electron-capture cross sections and rates in the zero-momentum transfer limit. We also discuss the thermal behavior of the cross sections. We find large differences in these cross sections and rates when compared to the naive single-particle estimates. These differences need to be taken into account for improved modeling of the early stages of type II supernova evolution
    • 

    corecore