62 research outputs found

    Using Remote Sensing to Map the Risk of Human Monkeypox Virus in the Congo Basin

    Get PDF
    Although the incidence of human monkeypox has greatly increased in Central Africa over the last decade, resources for surveillance remain extremely limited. We conducted a geospatial analysis using existing data to better inform future surveillance efforts. Using active surveillance data collected between 2005 and 2007, we identified locations in Sankuru district, Democratic Republic of Congo (DRC) where there have been one or more cases of human monkeypox. To assess what taxa constitute the main reservoirs of monkeypox, we tested whether human cases were associated with (i) rope squirrels (Funisciurus sp.), which were implicated in monkeypox outbreaks elsewhere in the DRC in the 1980s, or (ii) terrestrial rodents in the genera Cricetomys and Graphiurus, which are believed to be monkeypox reservoirs in West Africa. Results suggest that the best predictors of human monkeypox cases are proximity to dense forests and associated habitat preferred by rope squirrels. The risk of contracting monkeypox is significantly greater near sites predicted to be habitable for squirrels (OR = 1.32; 95% CI 1.08–1.63). We recommend that semi-deciduous rainforests with oil-palm, the rope squirrel’s main food source, be prioritized for monitoring

    Post-acute COVID-19 syndrome after reinfection and vaccine breakthrough by the SARS-CoV-2 Gamma variant in Brazil.

    Get PDF
    We describe a case of prolonged COVID-19 caused by the SARS-CoV-2 Gamma variant in a fully vaccinated healthcare worker, 387 days after an infection caused by lineage B.1.1.33. Infections were confirmed by whole-genome sequencing and corroborated by the detection of neutralizing antibodies in convalescent serum samples. Considering the permanent exposure of this healthcare worker to SARS-CoV-2, the waning immunity after the first infection, the low efficacy of the inactivated vaccine at preventing COVID-19, the immune escape of the Gamma variant (VOC), and the burden of post-COVID syndrome, this individual would have benefited from an additional dose of a heterologous vaccine

    Integrative tracking methods elucidate the evolutionary dynamics of a migratory divide.

    No full text
    Migratory divides, the boundary between adjacent bird populations that migrate in different directions, are of considerable interest to evolutionary biologists because of their alleged role in speciation of migratory birds. However, the small size of many passerines has traditionally limited the tools available to track populations and as a result, restricted our ability to study how reproductive isolation might occur across a divide. Here, we integrate multiple approaches by using genetic, geolocator, and morphological data to investigate a migratory divide in hermit thrushes (Catharus guttatus). First, high genetic divergence between migratory groups indicates the divide is a region of secondary contact between historically isolated populations. Second, despite low sample sizes, geolocators reveal dramatic differences in overwintering locations and migratory distance of individuals from either side of the divide. Third, a diagnostic genetic marker that proved useful for tracking a key population suggests a likely intermediate nonbreeding location of birds from the hybrid zone. This finding, combined with lower return rates from this region, is consistent with comparatively lower fitness of hybrids, which is possibly due to this intermediate migration pattern. We discuss our results in the context of reproductive isolating mechanisms associated with migration patterns that have long been hypothesized to promote divergence across migratory divides

    Out-of-Season Influenza during a COVID-19 Void in the State of Rio de Janeiro, Brazil: Temperature Matters

    Get PDF
    An out-of-season H3N2 type A influenza epidemic occurred in the State of Rio de Janeiro, Brazil during October-November 2021, in between the Delta and Omicron SARS-CoV-2 surges, which occurred in July-October 2021 and January-April 2022, respectively. We assessed the contribution of climate change and influenza immunization coverage in this unique, little publicized phenomenon. State weather patterns during the influenza epidemic were significantly different from the five preceding years, matching typical winter temperatures, associated with the out-of-season influenza. We also found a mismatch between influenza vaccine strains used in the winter of 2021 (trivalent vaccine with two type A strains (Victoria/2570/2019 H1N1, Hong Kong/2671/2019 H3N2) and one type B strain (Washington/02/2019, wild type) and the circulating influenza strain responsible for the epidemic (H3N2 Darwin type A influenza strain). In addition, in 2021, there was poor influenza vaccine coverage with only 56% of the population over 6 months old immunized. Amid the COVID-19 pandemic, we should be prepared for out-of-season outbreaks of other respiratory viruses in periods of COVID-19 remission, which underscore novel disease dynamics in the pandemic era. The availability of year-round influenza vaccines could help avoid unnecessary morbidity and mortality given that antibodies rapidly wane. Moreover, this would enable unimmunized individuals to have additional opportunities to vaccinate during out-of-season outbreaks

    Re-emergence of arbovirus diseases in the State of Rio de Janeiro, Brazil: The role of simultaneous viral circulation between 2014 and 2019

    No full text
    The burden of arbovirus diseases in Brazil has increased within the past decade due to the emergence of chikungunya and Zika and endemic circulation of all four dengue serotypes. Changes in temperature and rainfall patterns may alter conditions to favor vector-host transmission and allow for cyclic re-emergence of disease. We sought to determine the impact of climate conditions on arbovirus co-circulation in Rio de Janeiro, Brazil. We assessed the spatial and temporal distributions of chikungunya, dengue, and Zika cases from Brazil's national notifiable disease information system (SINAN) and created autoregressive integrated moving average models (ARIMA) to predict arbovirus incidence accounting for the lagged effect of temperature and rainfall. Each year, we estimate that the combined arboviruses were associated with an average of 8429 to 10,047 lost Disability-Adjusted Life Years (DALYs). After controlling for temperature and precipitation, our model predicted a three cycle pattern where large arbovirus outbreaks appear to be primed by a smaller scale surge and followed by a lull of cases. These dynamic arbovirus patterns in Rio de Janeiro support a mechanism of susceptibility enhancement until the theoretical threshold of population immunity allows for temporary cross protection among certain arboviruses. This suspected synergy presents a major public health challenge due to overlapping locations and seasonality of arbovirus diseases, which may perpetuate disease burden and overwhelm the health system
    • 

    corecore