27 research outputs found

    Detection and clearing of trapped ions in the high current Cornell photoinjector

    Full text link
    We have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high CW beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence of bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and CW beam currents in the range of 1-20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70 percent or higher, and in some cases our data is consistent with full ion clearing

    Beyond Triplet: Unconventional Superconductivity in a Spin-3/2 Topological Semimetal

    Get PDF
    In all known fermionic superfluids, Cooper pairs are composed of spin-1/2 quasi-particles that pair to form either spin-singlet or spin-triplet bound States. The spin of a Bloch electron, however, is fixed by the symmetries of the crystal and the atomic orbitals from which it is derived and, in some cases, can behave as if it were a spin-3/2 particle. The superconducting state of such a system allows pairing beyond spin-triplet, with higher spin quasi-particles combining to form quintet or septet pairs. We report evidence of unconventional superconductivity emerging from a spin-3/2 quasi-particle electronic structure in the half-Heusler semimetal YPtBi, a low-carrier density noncentrosymmetric cubic material with a high symmetry that preserves the p-like j = 3/2 manifold in the Bi-based Γ8 band in the presence of strong spin-orbit coupling. With a striking linear temperature dependence of the London penetration depth, the existence of line nodes in the superconducting order parameter Δ is directly explained by a mixed-parity Cooper pairing model with high total angular momentum, consistent with a high-spin fermionic superfluid state. We propose a k·p model of the j = 3/2 fermions to explain how a dominant J = 3 septet pairing state is the simplest solution that naturally produces nodes in the mixed even-odd parity gap. Together with the underlying topologically nontrivial band structure, the unconventional pairing in this system represents a truly novel form of superfluidity that has strong potential for leading the development of a new series of topological superconductors

    Comparison of Human Adult Stem Cells from Adipose Tissue and Bone Marrow in the Treatment of Experimental Autoimmune Encephalomyelitis

    Get PDF
    Introduction. While administration of ex vitro culture-expanded stem cells has been used to study immunosuppressive mechanisms in multiple models of autoimmune diseases, less is known about the uncultured, nonexpanded stromal vascular fraction (SVF)-based therapy. The SVF is composed of a heterogeneous population of cells and has been used clinically to treat acute and chronic diseases, alleviating symptoms in a range of tissues and organs. Methods. In this study, the ability of human SVF cells was compared with culture-expanded adipose stem cells (ASCs) and bone-derived marrow stromal cells (BMSCs) as a treatment of myelin oligodendrocyte glycoprotein (35-55)-induced experimental autoimmune encephalitis in C57Bl/6J mice, a well-studied multiple sclerosis model (MS). A total of 1 x 106 BMSCs, ASCs, or SVF cells were administered intraperitoneally concomitantly with the induction of disease. Mice were monitored daily for clinical signs of disease by three independent, blinded investigators and rated on a scale of 0 to 5. Spinal cords were obtained after euthanasia at day 30 and processed for histological staining using luxol fast blue, toluidine blue, and hematoxylin and eosin to measure myelin and infiltrating immune cells. Blood was collected from mice at day 30 and analyzed by enzyme-linked immunosorbent assay to measure serum levels of inflammatory cytokines. Results: The data indicate that intraperitoneal administration of all cell types significantly ameliorates the severity of disease. Furthermore, the data also demonstrate, for the first time, that the SVF was as effective as the more commonly cultured BMSCs and ASCs in an MS model. All cell therapies also demonstrated a similar reduction in tissue damage, inflammatory infiltrates, and sera levels of IFNγ and IL-12. While IFNγ levels were reduced to comparable levels between treatment groups, levels of IL-12 were significantly lower in SVF-treated than BMSC-treated or ASC-treated mice. Conclusions: Based on these data, it is evident that SVF cells have relevant therapeutic potential in an animal model of chronic MS and might represent a valuable tool for stem cell-based therapy in chronic inflammatory disease of the central nervous system. SVF offers advantages of direct and rapid isolation procedure in a xenobiotic-free environment

    Administration of Murine Stromal Vascular Fraction Ameliorates Chronic Experimental Autoimmune Encephalomyelitis

    Get PDF
    Administration of adipose-derived stromal/stem cells (ASCs) represents a promising therapeutic approach for autoimmune diseases since they have been shown to have immunomodulatory properties. The uncultured, nonexpanded counterpart of ASCs, the stromal vascular fraction (SVF), is composed of a heterogeneous mixture of cells. Although administration of ex vivo culture-expanded ASCs has been used to study immunomodulatory mechanisms in multiple models of autoimmune diseases, less is known about SVF-based therapy. The ability of murine SVF cells to treat myelin oligodendrocyte glycoprotein35-55-induced experimental autoimmune encephalitis (EAE) was compared with that of culture-expanded ASCs in C57Bl/6J mice. A total of 1 x 106 SVF cells or ASCs were administered intraperitoneally concomitantly with the induction of disease. The data indicate that intraperitoneal administration of ASCs significantly ameliorated the severity of disease course. They also demonstrate, for the first time, that the SVF effectively inhibited disease severity and was statistically more effective than ASCs. Both cell therapies also demonstrated a reduction in tissue damage, a decrease in inflammatory infiltrates, and a reduction in sera levels of interferon-γ and interleukin-12. Based on these data, SVF cells effectively inhibited EAE disease progression more than culture-expanded ASCs

    Mismatches in scale between highly mobile marine megafauna and marine protected areas

    Get PDF
    Marine protected areas (MPAs), particularly large MPAs, are increasing in number and size around the globe in part to facilitate the conservation of marine megafauna under the assumption that large-scale MPAs better align with vagile life histories; however, this alignment is not well established. Using a global tracking dataset from 36 species across five taxa, chosen to reflect the span of home range size in highly mobile marine megafauna, we show most MPAs are too small to encompass complete home ranges of most species. Based on size alone, 40% of existing MPAs could encompass the home ranges of the smallest ranged species, while only \u3c 1% of existing MPAs could encompass those of the largest ranged species. Further, where home ranges and MPAs overlapped in real geographic space, MPAs encompassed \u3c 5% of core areas used by all species. Despite most home ranges of mobile marine megafauna being much larger than existing MPAs, we demonstrate how benefits from MPAs are still likely to accrue by targeting seasonal aggregations and critical life history stages and through other management techniques
    corecore