11 research outputs found

    Seismic Expression of Polygonal Faults and Its Impact on Fluid Flow Migration for Gas Hydrates Formation in Deep Water of the South China Sea

    Get PDF
    Polygonal faults were identified from three-dimensional (3D) seismic data in the middle-late Miocene marine sequences of the South China Sea. Polygonal faults in the study area are normal faults with fault lengths ranging from 100 to 1500 m, fault spaces ranging from 40 to 800 m, and throws ranging from 10 to 40 m. Gas hydrate was inferred from the seismic polarity, the reflection strength, and the temperature-pressure equilibrium computation results. Gas hydrates located in the sediments above the polygonal faults layer. Polygonal faults can act as pathways for the migration of fluid flow, which can supply hydrocarbons for the formation of gas hydrates

    A multi-vehicle longitudinal trajectory collision avoidance strategy using AEBS with vehicle-infrastructure communication

    Get PDF
    Shortening inter-vehicle distance can increase traffic throughput on roads for increasing volume of vehicles. In the process, traffic accidents occur more frequently, especially for multi-car accidents. Furthermore, it is difficult for drivers to drive safely under such complex driving conditions. This paper investigates multi-vehicle longitudinal collision avoidance issue under such traffic conditions based on the Advanced Emergency Braking System (AEBS). AEBS is used to avoid collisions or mitigate the impact during critical situations by applying brake automatically. Hierarchical multi-vehicle longitudinal collision avoidance controller is proposed to guarantee safety of multi-cars using Vehicle-to-Infrastructure (V2I) communication. High-level controller is designed to ensure safety of multi-cars and optimize total energy by calculating the target braking force. Vehicle network is used to get the key vehicle-road interaction data and constrained hybrid genetic algorithm (CHGA) is adopted to decouple the vehicle-road interactive system. Lower level non-singular Fractional Terminal Sliding Mode(NFTSM) Controller is built to achieve control goals of high-level controller. Simulations are carried out under typical driving conditions. Results verify that the proposed system in this paper can avoid or mitigate the collision risk compared to the vehicle without this system
    corecore