1,524 research outputs found
A quantum algorithm for solving some discrete mathematical problems by probing their energy spectra
When a probe qubit is coupled to a quantum register that represents a
physical system, the probe qubit will exhibit a dynamical response only when it
is resonant with a transition in the system. Using this principle, we propose a
quantum algorithm for solving discrete mathematical problems based on the
circuit model. Our algorithm has favorable scaling properties in solving some
discrete mathematical problems.Comment: 5 pages, 2 figure
Evaluating Laguerre-Gaussian beams with an invariant parameter
We define a new parameter about Laguerre-Gaussian (LG) beams, named
, which is only related to mode indices and . This parameter
is able to both evaluate and distinguish LG beams. The values are
first calculated theoretically and then measured experimentally for several
different LG beams. Another mode quality parameter, value, is also
measured. The comparison between and shows same trend for
the quality of LG mode, while the measurement of is much easier
than .Comment: 3.1 pages, 4 figures, 1 tabl
Neural Graph Collaborative Filtering
Learning vector representations (aka. embeddings) of users and items lies at
the core of modern recommender systems. Ranging from early matrix factorization
to recently emerged deep learning based methods, existing efforts typically
obtain a user's (or an item's) embedding by mapping from pre-existing features
that describe the user (or the item), such as ID and attributes. We argue that
an inherent drawback of such methods is that, the collaborative signal, which
is latent in user-item interactions, is not encoded in the embedding process.
As such, the resultant embeddings may not be sufficient to capture the
collaborative filtering effect.
In this work, we propose to integrate the user-item interactions -- more
specifically the bipartite graph structure -- into the embedding process. We
develop a new recommendation framework Neural Graph Collaborative Filtering
(NGCF), which exploits the user-item graph structure by propagating embeddings
on it. This leads to the expressive modeling of high-order connectivity in
user-item graph, effectively injecting the collaborative signal into the
embedding process in an explicit manner. We conduct extensive experiments on
three public benchmarks, demonstrating significant improvements over several
state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further
analysis verifies the importance of embedding propagation for learning better
user and item representations, justifying the rationality and effectiveness of
NGCF. Codes are available at
https://github.com/xiangwang1223/neural_graph_collaborative_filtering.Comment: SIGIR 2019; the latest version of NGCF paper, which is distinct from
the version published in ACM Digital Librar
Bilinear Graph Neural Network with Neighbor Interactions
Graph Neural Network (GNN) is a powerful model to learn representations and
make predictions on graph data. Existing efforts on GNN have largely defined
the graph convolution as a weighted sum of the features of the connected nodes
to form the representation of the target node. Nevertheless, the operation of
weighted sum assumes the neighbor nodes are independent of each other, and
ignores the possible interactions between them. When such interactions exist,
such as the co-occurrence of two neighbor nodes is a strong signal of the
target node's characteristics, existing GNN models may fail to capture the
signal. In this work, we argue the importance of modeling the interactions
between neighbor nodes in GNN. We propose a new graph convolution operator,
which augments the weighted sum with pairwise interactions of the
representations of neighbor nodes. We term this framework as Bilinear Graph
Neural Network (BGNN), which improves GNN representation ability with bilinear
interactions between neighbor nodes. In particular, we specify two BGNN models
named BGCN and BGAT, based on the well-known GCN and GAT, respectively.
Empirical results on three public benchmarks of semi-supervised node
classification verify the effectiveness of BGNN -- BGCN (BGAT) outperforms GCN
(GAT) by 1.6% (1.5%) in classification accuracy.Codes are available at:
https://github.com/zhuhm1996/bgnn.Comment: Accepted by IJCAI 2020. SOLE copyright holder is IJCAI (International
Joint Conferences on Artificial Intelligence), all rights reserve
How to Retrain Recommender System? A Sequential Meta-Learning Method
Practical recommender systems need be periodically retrained to refresh the
model with new interaction data. To pursue high model fidelity, it is usually
desirable to retrain the model on both historical and new data, since it can
account for both long-term and short-term user preference. However, a full
model retraining could be very time-consuming and memory-costly, especially
when the scale of historical data is large. In this work, we study the model
retraining mechanism for recommender systems, a topic of high practical values
but has been relatively little explored in the research community.
Our first belief is that retraining the model on historical data is
unnecessary, since the model has been trained on it before. Nevertheless,
normal training on new data only may easily cause overfitting and forgetting
issues, since the new data is of a smaller scale and contains fewer information
on long-term user preference. To address this dilemma, we propose a new
training method, aiming to abandon the historical data during retraining
through learning to transfer the past training experience. Specifically, we
design a neural network-based transfer component, which transforms the old
model to a new model that is tailored for future recommendations. To learn the
transfer component well, we optimize the "future performance" -- i.e., the
recommendation accuracy evaluated in the next time period. Our Sequential
Meta-Learning(SML) method offers a general training paradigm that is applicable
to any differentiable model. We demonstrate SML on matrix factorization and
conduct experiments on two real-world datasets. Empirical results show that SML
not only achieves significant speed-up, but also outperforms the full model
retraining in recommendation accuracy, validating the effectiveness of our
proposals. We release our codes at: https://github.com/zyang1580/SML.Comment: Appear in SIGIR 202
- …
