31 research outputs found

    Analysis of Vibration Attenuation and Energy Consumption of Blasting Demolition Chimney: A Case Study

    Get PDF
    Demolishing a tall chimney by directional blasting can save time and cost. However, the blasting vibration and the touchdown vibration of the parts of the chimney falling to the ground will cause noise disturbance to the local residents. To reduce the vibration effect of blasting demolition of the chimney, taking the 180 m high chimney in Jiaozuo, China, as the engineering background, the loose accumulation body with a right-angled trapezoid section 3-6 m thick was piled with three kinds of graded gravel particles as the buffer layer. According to the site restrictions, the chimney was demolished by directional blasting in two stages. The vibration propagation and attenuation rules of the blasting demolition of the chimney were analyzed and touchdown vibrations of two parts of the chimney were monitored also. Results show that the low frequency vibrations generated by the blasting and chimney touchdown have a greater impact on the surrounding environment. The vibration velocity and energy attenuation represent a form of power function. With the increase of the number of chimney touchdowns, the energy absorption rate of the loose accumulation body becomes lower. The obtained conclusions in this study can provide a reference for the similar blasting demolition practice

    Phylogenetic and Molecular Characterization of H9N2 Influenza Isolates from Chickens in Northern China from 2007–2009

    Get PDF
    The repeated transmission to pigs and humans, and the long-term endemicity in terrestrial poultry of H9N2 viruses in China lend urgency to the study of their ecology and pathogenicity. In the present paper, we reported an H9N2 virus sublineage isolated from chickens in northern China from 2007 to 2009 has high lethality for mice. Phylogenetic analysis of the full genome indicated that six representative H9N2 isolates shared high homology to each other, and they clustered in the same sublineage with other H9N2 viruses isolated recently in northern China. The isolates were double-reassortant viruses containing M genes similar to A/Quail/Hong Kong/G1/97 (H9N2) and the other seven gene segments from A/Chicken/Shanghai/F/98 (H9N2). These six isolates were capable of replicating in the lungs of infected chickens without producing observable clinical signs of disease or death. However, they were highly lethal to mice with mortality rates as high as 100% (14/14) without prior adaptation. The affected mice exhibited severe respiratory syndromes and diffuse lung injury. The H9N2 viruses could be detected in multiple organs of the infected mice, including hearts, livers, spleens, lungs and kidneys. Our findings demonstrated that H9N2 viruses isolated from the chickens in northern China have established a stable sublineage with enhanced pathogenicity to mice, suggesting that urgent attention will need to be paid to the transmission of H9N2 viruses from chickens to mammals

    Integrated metabolomics and lipidomics evaluate the alterations of flavor precursors in chicken breast muscle with white striping symptom

    Get PDF
    White striping (WS) is the most common myopathy in the broiler chicken industry. To reveal flavor changes of WS meat objectively, flavor precursors of WS breast muscle were evaluated systematically with integrated metabolomics and lipidomics. The results showed that WS could be distinguished from normal controls by E-nose, and four volatile compounds (o-xylene, benzene, 1,3-dimethyl, 2-heptanone and 6-methyl and Acetic acid and ethyl ester) were detected as decreased compounds by gas chromatography-mass spectrometry. Lipidomic analysis showed that WS breast fillets featured increased neutral lipid (83.8%) and decreased phospholipid molecules (33.2%). Targeted metabolomic analysis indicated that 16 hydrophilic metabolites were altered. Thereinto, some water-soluble flavor precursors, such as adenosine monophosphate, GDP-fucose and L-arginine increased significantly, but fructose 1,6-bisphosphate and L-histidine significantly decreased in the WS group. These results provided a systematic evaluation of the flavor precursors profile in the WS meat of broiler chickens

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    An Overview on Evaluating and Predicting Scholarly Article Impact

    No full text
    Scholarly article impact reflects the significance of academic output recognised by academic peers, and it often plays a crucial role in assessing the scientific achievements of researchers, teams, institutions and countries. It is also used for addressing various needs in the academic and scientific arena, such as recruitment decisions, promotions, and funding allocations. This article provides a comprehensive review of recent progresses related to article impact assessment and prediction. The review starts by sharing some insight into the article impact research and outlines current research status. Some core methods and recent progress are presented to outline how article impact metrics and prediction have evolved to consider integrating multiple networks. Key techniques, including statistical analysis, machine learning, data mining and network science, are discussed. In particular, we highlight important applications of each technique in article impact research. Subsequently, we discuss the open issues and challenges of article impact research. At the same time, this review points out some important research directions, including article impact evaluation by considering Conflict of Interest, time and location information, various distributions of scholarly entities, and rising stars

    Several models combined with ultrasound techniques to predict breast muscle weight in broilers

    No full text
    ABSTRACT: The weight of breast muscle (WBM) is a highly monitored indicator in broiler breeding that can be obtained after slaughtering. Currently, due to the lack of accurate in vivo phenotypes for both genomic and phenotypic selection, genetic gains in WBM fall short of initial expectations. In this study, 1,006 market-age (42 d) broilers from 3 generations over 2 yr were randomly selected, and the breast width (BW), fossil bone length (FBL), breast muscle thickness (BMT), and live weight (LW) were measured exactly in vivo. Eight models, including multiple linear regression (MLR), ridge regression (RR), least absolute shrinkage and selection operator (LASSO), and elastic net (EN), were fitted to explore the best regression relationships between breast muscle weight and these indicators. Support vector machine (SVM) methods with both linear kernels and radial kernels were used to fit the models, while 2 decision tree-based machine learning algorithms, random forest (RF), and extreme gradient boosting (XGBoost), were used to establish the prediction model. The predictive effects of different combinations of independent variables were compared, leading to the conclusion that the EN model achieves the best predictive power when all 4 live features are used as inputs and is slightly better than the other models (R2 = 0.7696). This method could be applied in practical production and breeding work, leading to substantial cost savings and enhancements in the breeding process

    Identification of Candidate Genes for Meat Color of Chicken by Combing Selection Signature Analyses and Differentially Expressed Genes

    No full text
    Meat color, an important index of chicken quality, is highly related to heme pigment, glycolysis, and intramuscular fat metabolisms. The objective of this study is to obtain candidate genes associated with meat color in chickens based on the comparison of fast-growing, white-feathered chickens (Line B) and slow-growing, yellow-feathered chickens (Jingxing Yellow), which have significant differences in meat color. The differentially expressed genes (DEGs) between Line B and Jingxing Yellow were identified in beast muscle. The fixation index (FST) method was used to detect signatures of positive selection between the two breeds. Screening of 1109 genes by the FST and 1317 candidate DEGs identified by RNA-seq. After gene ontology analysis along with the Kyoto Encyclopedia of Genes and Genomes, 16 genes associated with glycolysis, fatty acid metabolism, protein metabolism, and heme content were identified as candidate genes that regulate the color of chicken breast meat, especially TBXAS1 (redness), GDPD5 (yellowness), SLC2A6 (lightness), and MMP27 (lightness). These findings should be helpful for further elucidating the molecular mechanisms and developing molecular markers to facilitate the selection of chicken meat color
    corecore