18 research outputs found

    A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis

    Get PDF
    Patients with newly diagnosed multiple myeloma (NDMM) with high-risk disease are in need of new treatment strategies to improve the outcomes. Multiple clinical, cytogenetic, or gene expression features have been used to identify high-risk patients, each of which has significant weaknesses. Inclusion of molecular features into risk stratification could resolve the current challenges. In a genome-wide analysis of the largest set of molecular and clinical data established to date from NDMM, as part of the Myeloma Genome Project, we have defined DNA drivers of aggressive clinical behavior. Whole-genome and exome data from 1273 NDMM patients identified genetic factors that contribute significantly to progression free survival (PFS) and overall survival (OS) (cumulative R2 = 18.4% and 25.2%, respectively). Integrating DNA drivers and clinical data into a Cox model using 784 patients with ISS, age, PFS, OS, and genomic data, the model has a cumlative R2 of 34.3% for PFS and 46.5% for OS. A high-risk subgroup was defined by recursive partitioning using either a) bi-allelic TP53 inactivation or b) amplification (≥4 copies) of CKS1B (1q21) on the background of International Staging System III, comprising 6.1% of the population (median PFS = 15.4 months; OS = 20.7 months) that was validated in an independent dataset. Double-Hit patients have a dire prognosis despite modern therapies and should be considered for novel therapeutic approaches

    Isolation of Circulating Plasma Cells in Multiple Myeloma Using CD138 Antibody-Based Capture in a Microfluidic Device

    No full text
    The necessity for bone marrow aspiration and the lack of highly sensitive assays to detect residual disease present challenges for effective management of multiple myeloma (MM), a plasma cell cancer. We show that a microfluidic cell capture based on CD138 antigen, which is highly expressed on plasma cells, permits quantitation of rare circulating plasma cells (CPCs) in blood and subsequent fluorescence-based assays. The microfluidic device is based on a herringbone channel design, and exhibits an estimated cell capture efficiency of ~40–70%, permitting detection of <10 CPCs/mL using 1-mL sample volumes, which is difficult using existing techniques. In bone marrow samples, the microfluidic-based plasma cell counts exhibited excellent correlation with flow cytometry analysis. In peripheral blood samples, the device detected a baseline of 2–5 CD138+ cells/mL in healthy donor blood, with significantly higher numbers in blood samples of MM patients in remission (20–24 CD138+ cells/mL), and yet higher numbers in MM patients exhibiting disease (45–184 CD138+ cells/mL). Analysis of CPCs isolated using the device was consistent with serum immunoglobulin assays that are commonly used in MM diagnostics. These results indicate the potential of CD138-based microfluidic CPC capture as a useful ‘liquid biopsy’ that may complement or partially replace bone marrow aspiration

    The sumoylation pathway is dysregulated in multiple myeloma and is associated with adverse patient outcome

    No full text
    Multiple myeloma (MM) is a plasma cell neoplasm that proceeds through a premalignant state of monoclonal gammopathy of unknown significance; however, the molecular events responsible for myelomagenesis remain uncharacterized. To identify cellular pathways deregulated in MM, we addressed that sumoylation is homologous to ubiquitination and results in the attachment of the ubiquitin-like protein Sumo onto target proteins. Sumoylation was markedly enhanced in MM patient lysates compared with normal plasma cells and expression profiling indicated a relative induction of sumoylation pathway genes. The Sumo-conjugating enzyme Ube2I, the Sumo-ligase PIAS1, and the Sumo-inducer ARF were elevated in MM patient samples and cell lines. Survival correlated with expression because 80% of patients with low UBE2I and PIAS1 were living 6 years after transplantation, whereas only 45% of patients with high expression survived 6 years. UBE2I encodes the sole Sumo-conjugating enzyme in mammalian cells and cells transfected with a dominant-negative sumoylation-deficient UBE2I mutant exhibited decreased survival after radiation exposure, impaired adhesion to bone marrow stroma cell and decreased bone marrow stroma cell–induced proliferation. UBE2I confers cells with multiple advantages to promote tumorigenesis and predicts decreased survival when combined with PIAS1. The sumoylation pathway is a novel therapeutic target with implications for existing proteasomal-based treatment strategies

    Apoptosis reprogramming triggered by splicing inhibitors sensitizes multiple myeloma cells to Venetoclax treatment

    No full text
    none25: Identification of novel vulnerabilities in the context of therapeutic resistance is emerging as key challenge for cancer treatment. Recent studies have detected pervasive aberrant splicing in cancer cells, supporting its targeting for novel therapeutic strategies. Here, we evaluated the expression of several spliceosome machinery components in multiple myeloma (MM) cells and the impact of splicing modulation on tumor cell growth and viability. A comprehensive gene expression analysis confirmed the reported deregulation of spliceosome machinery components in MM cells, compared to normal plasma cells (PCs) from healthy donors, with its pharmacological and genetic modulation resulting in impaired growth and survival of MM cell lines and patient-derived malignant PCs. Consistent with this, transcriptomic analysis revealed deregulation of BCL2 family members, including decrease of antiapoptotic long form of myeloid cell leukemia-1 (MCL1) expression, as crucial for "priming" MM cells for Venetoclax activity in vitro and in vivo, irrespective of t(11;14) status. Overall, our data provide a rationale for supporting the clinical use of splicing modulators as a strategy to reprogram apoptotic dependencies and make all MM patients more vulnerable to BCL2 inhibitors.mixedSoncini, Debora; Martinuzzi, Claudia; Becherini, Pamela; Gelli, Elisa; Ruberti, Samantha; Todoerti, Katia; Mastracci, Luca; Contini, Paola; Cagnetta, Antonia; Laudisi, Antonella; Guolo, Fabio; Minetto, Paola; Miglino, Maurizio; Aquino, Sara; Varaldo, Riccardo; Reverberi, Daniele; Formica, Matteo; Passalacqua, Mario; Nencioni, Alessio; Neri, Antonino; Samur, Mehmet K; Munshi, Nikhil C; Fulciniti, Mariateresa; Lemoli, Roberto M; Cea, MicheleSoncini, Debora; Martinuzzi, Claudia; Becherini, Pamela; Gelli, Elisa; Ruberti, Samantha; Todoerti, Katia; Mastracci, Luca; Contini, Paola; Cagnetta, Antonia; Laudisi, Antonella; Guolo, Fabio; Minetto, Paola; Miglino, Maurizio; Aquino, Sara; Varaldo, Riccardo; Reverberi, Daniele; Formica, Matteo; Passalacqua, Mario; Nencioni, Alessio; Neri, Antonino; Samur, Mehmet K; Munshi, Nikhil C; Fulciniti, Mariateresa; Lemoli, Roberto M; Cea, Michel
    corecore