19 research outputs found

    A search for new members of the βPictoris, Tucana-Horologium and ɛCha moving groups in the RAVE data base

    Get PDF
    We report on the discovery of new members of nearby young moving groups, exploiting the full power of combining the Radial Velocity Experiment (RAVE) survey with several stellar age diagnostic methods and follow-up high-resolution optical spectroscopy. The results include the identification of one new and five likely members of the βPictoris moving group, ranging from spectral types F9 to M4 with the majority being M dwarfs, one K7 likely member of the εCha group and two stars in the Tucana-Horologium association. Based on the positive identifications, we foreshadow a great potential of the RAVE data base in progressing towards a full census of young moving groups in the solar neighbourhood

    The Radial Velocity Experiment (rave): Second Data Release

    Get PDF
    We present the second data release of the Radial Velocity Experiment (RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, surface gravity, and rotational velocity) of up to one million stars using the 6 dF multi-object spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory (AAO). The RAVE program started in 2003, obtaining medium resolution spectra (median R = 7500) in the Ca-triplet region (8410-8795 ) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogues, in the magnitude range 9 < I < 12. Following the first data release, the current release doubles the sample of published radial velocities, now containing 51,829 radial velocities for 49,327 individual stars observed on 141 nights between 2003 April 11 and 2005 March 31. Comparison with external data sets shows that the new data collected since 2004 April 3 show a standard deviation of 1.3 km s-1, about twice as good as for the first data release. For the first time, this data release contains values of stellar parameters from 22,407 spectra of 21,121 individual stars. They were derived by a penalized χ2 method using an extensive grid of synthetic spectra calculated from the latest version of Kurucz stellar atmosphere models. From comparison with external data sets, our conservative estimates of errors of the stellar parameters for a spectrum with an average signal-to-noise ratio (S/N) of 40 are 400 K in temperature, 0.5 dex in gravity, and 0.2 dex in metallicity. We note however that, for all three stellar parameters, the internal errors estimated from repeat RAVE observations of 855 stars are at least a factor 2 smaller. We demonstrate that the results show no systematic offsets if compared to values derived from photometry or complementary spectroscopic analyses. The data release includes proper motions from Starnet2, Tycho-2, and UCAC2 catalogs and photometric measurements from Tycho-2 USNO-B, DENIS, and 2MASS. The data release can be accessed via the RAVE Web site: http://www.rave-survey.org and through CDS

    The Milky Way Bulge: Observed properties and a comparison to external galaxies

    Full text link
    The Milky Way bulge offers a unique opportunity to investigate in detail the role that different processes such as dynamical instabilities, hierarchical merging, and dissipational collapse may have played in the history of the Galaxy formation and evolution based on its resolved stellar population properties. Large observation programmes and surveys of the bulge are providing for the first time a look into the global view of the Milky Way bulge that can be compared with the bulges of other galaxies, and be used as a template for detailed comparison with models. The Milky Way has been shown to have a box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an additional spheroidal component. In this review we summarise the global chemical abundances, kinematics and structural properties that allow us to disentangle these multiple components and provide constraints to understand their origin. The investigation of both detailed and global properties of the bulge now provide us with the opportunity to characterise the bulge as observed in models, and to place the mixed component bulge scenario in the general context of external galaxies. When writing this review, we considered the perspectives of researchers working with the Milky Way and researchers working with external galaxies. It is an attempt to approach both communities for a fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure

    Magnetic fields in supernova remnants and pulsar-wind nebulae

    Full text link
    We review the observations of supernova remnants (SNRs) and pulsar-wind nebulae (PWNe) that give information on the strength and orientation of magnetic fields. Radio polarimetry gives the degree of order of magnetic fields, and the orientation of the ordered component. Many young shell supernova remnants show evidence for synchrotron X-ray emission. The spatial analysis of this emission suggests that magnetic fields are amplified by one to two orders of magnitude in strong shocks. Detection of several remnants in TeV gamma rays implies a lower limit on the magnetic-field strength (or a measurement, if the emission process is inverse-Compton upscattering of cosmic microwave background photons). Upper limits to GeV emission similarly provide lower limits on magnetic-field strengths. In the historical shell remnants, lower limits on B range from 25 to 1000 microGauss. Two remnants show variability of synchrotron X-ray emission with a timescale of years. If this timescale is the electron-acceleration or radiative loss timescale, magnetic fields of order 1 mG are also implied. In pulsar-wind nebulae, equipartition arguments and dynamical modeling can be used to infer magnetic-field strengths anywhere from about 5 microGauss to 1 mG. Polarized fractions are considerably higher than in SNRs, ranging to 50 or 60% in some cases; magnetic-field geometries often suggest a toroidal structure around the pulsar, but this is not universal. Viewing-angle effects undoubtedly play a role. MHD models of radio emission in shell SNRs show that different orientations of upstream magnetic field, and different assumptions about electron acceleration, predict different radio morphology. In the remnant of SN 1006, such comparisons imply a magnetic-field orientation connecting the bright limbs, with a non-negligible gradient of its strength across the remnant.Comment: 20 pages, 24 figures; to be published in SpSciRev. Minor wording change in Abstrac

    Predominance of the direct reaction mode in 58^{58}Ni(6^6Li,d)62^{62}Zn

    No full text
    corecore