60 research outputs found

    Midsummer decrease in vertical geomagnetic field at the magnetic pole under strong solar radiation into the polar ionosphere

    Get PDF
    The vertical component of the geomagnetic field Z on the ground shows a noticeable decrease in midsummer, amounting to several tens of nT, in the polar region at and around the geomagnetic pole. This peculiar phenomenon seems to be attributable to the eastward Hall current in the sunlit polar ionosphere at the lower E region produced by the perpetual eastward neutral wind in the summer season, which is recently detected with the EISCAT experiment

    Role of Extracellular Pi Levels on Kidney Disease Progression in a Podocyte Injury

    Get PDF
    Background: Hyperphosphatemia is a major accelerator of complications in chronic kidney disease and dialysis, and phosphate (Pi) binders have been shown to regulate extracellular Pi levels. Research on hyperphosphatemia in mouse models is scarce, and few models display hyperphosphatemia induced by glomerular injury, despite its relevance to human glomerular disease conditions. In this study, we investigated the involvement of hyperphosphatemia in kidney disease progression using a mouse model in which hyperphosphatemia is induced by focal segmental glomerulosclerosis (FSGS). Methods: We established the NEP25 mouse model in which FSGS-hyperphosphatemia is induced by podocyte injury and evaluated the effect of a Pi binder, sevelamer. Results: After disease induction, we confirmed a gradual increase in serum Pi accompanied by reduced renal function and observed increases in serum FGF23 and PTH. Treatment with sevelamer significantly reduced serum Pi and urinary Pi fractional excretion and suppressed increases in serum FGF23 and PTH. A high dose improved serum creatinine and tubular injury markers, and pathological analysis confirmed amelioration of glomerular and tubular damage. Gene expression and marker analysis suggested protective effects on tubular epithelial cells in the diseased kidney. Compared to disease control, NEP25 mice treated with sevelamer retained their mRNA expression of Klotho, a known FGF23 co-receptor and renoprotective factor. Conclusions: Hyperphosphatemia caused by renal function decline was observed in a FSGS-induced NEP25 mouse model. Studies using this model showed that Pi regulation had a positive impact on kidney disease progression, and notably on tubular epithelial cell injury, which indicates the importance of Pi regulation in the treatment of kidney disease progression

    Search for a stochastic background of 100-MHz gravitational waves with laser interferometers

    Full text link
    This letter reports the results of a search for a stochastic background of gravitational waves (GW) at 100 MHz by laser interferometry. We have developed a GW detector, which is a pair of 75-cm baseline synchronous recycling (resonant recycling) interferometers. Each interferometer has a strain sensitivity of ~ 10^{-16} Hz^{-1/2} at 100 MHz. By cross-correlating the outputs of the two interferometers within 1000 seconds, we found h_{100}^2 Omega_{gw} < 6 times 10^{25} to be an upper limit on the energy density spectrum of the GW background in a 2-kHz bandwidth around 100 MHz, where a flat spectrum is assumed.Comment: Accepted by Phys.Rev.Lett.; 10 pages, 4 figure

    BMP4の機能調節は糖尿病性腎症及びポドサイト障害の治療につながる

    Get PDF
    Podocyte injury has been proposed to play an important role in diabetic nephropathy; however, its pathological mechanism remains unclear. We have shown that bone morphogenetic protein 4 (BMP4) signaling leads to the glomerular changes characteristic of this disorder. To analyze the molecular mechanism of podocyte injury, the effect of BMP4 was investigated using streptozotocin (STZ)- induced, Bmp4 heterozygous knockout (Bmp4+/−) and podocyte-specific Bmp4 knockout mice. Mice with STZ-induced diabetes exhibited glomerular matrix hyperplasia and decreased numbers of podocyte nucleus-specific WT1-positive cells. The number of podocytes and proteinuria were improved in both diabetic Bmp4 knockout mouse models compared to the effects observed in the control mice. The effect of BMP4 overexpression on Bmp4-induced or podocyte-specific transgenic mice was examined. Tamoxifen-induced Bmp4-overexpressing mice exhibited mesangial matrix expansion and decreased numbers of WT1-positive cells. Podocyte-specific Bmp4-overexpressing mice displayed increased kidney BMP4 expression and mesangial matrix expansion but decreased nephrin expression and numbers of WT1-positive cells. Both lines of Bmp4-overexpressing mice exhibited increased albuminuria. In cultured podocytes, BMP4 increased phospho-p38 levels. BMP4 decreased nephrin expression but increased cleaved caspase-3 levels. p38 suppression inhibited caspase-3 activation. Apoptosis was confirmed in STZ-diabetic glomeruli and Bmp4-overexpressing mice. Bmp4 +/− mice with diabetes displayed reduced apoptosis. Based on these data, the BMP4 signaling pathway plays important roles in the development of both podocyte injury and mesangial matrix expansion in diabetic nephropathy

    The Japanese space gravitational wave antenna; DECIGO

    Get PDF
    DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) is the future Japanese space gravitational wave antenna. DECIGO is expected to open a new window of observation for gravitational wave astronomy especially between 0.1 Hz and 10 Hz, revealing various mysteries of the universe such as dark energy, formation mechanism of supermassive black holes, and inflation of the universe. The pre-conceptual design of DECIGO consists of three drag-free spacecraft, whose relative displacements are measured by a differential Fabry– Perot Michelson interferometer. We plan to launch two missions, DECIGO pathfinder and pre- DECIGO first and finally DECIGO in 2024

    DECIGO pathfinder

    Get PDF
    DECIGO pathfinder (DPF) is a milestone satellite mission for DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) which is a future space gravitational wave antenna. DECIGO is expected to provide us fruitful insights into the universe, in particular about dark energy, a formation mechanism of supermassive black holes, and the inflation of the universe. Since DECIGO will be an extremely large mission which will formed by three drag-free spacecraft with 1000m separation, it is significant to gain the technical feasibility of DECIGO before its planned launch in 2024. Thus, we are planning to launch two milestone missions: DPF and pre-DECIGO. The conceptual design and current status of the first milestone mission, DPF, are reviewed in this article

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    The Japanese space gravitational wave antenna—DECIGO

    Full text link

    DECIGO and DECIGO pathfinder

    Full text link
    corecore