15 research outputs found

    Evolution of the remnant Fermi-surface state in the lightly doped correlated spin-orbit insulator Sr2-xLaxIrO4

    Get PDF
    The electronic structure of the lightly electron-doped correlated spin-orbit insulator Sr2IrO4 has been studied by angle-resolved photoelectron spectroscopy. We have observed the coexistence of a lower Hubbard band and an in-gap band; the momentum dependence of the latter traces that of the band calculations without on-site Coulomb repulsion. The in-gap state remained anisotropically gapped in all observed momentum areas, forming a remnant Fermi-surface state, evolving towards the Fermi energy by carrier doping. These experimental results show a striking similarity with those observed in deeply underdoped cuprates, suggesting the common nature of the nodal liquid states observed in both compounds

    Self-tolerance in multiple sclerosis

    Get PDF
    During the last decade, several defects in self-tolerance have been identified in multiple sclerosis. Dysfunction in central tolerance leads to the thymic output of antigen-specific T cells with T cell receptor alterations favouring autoimmune reactions. In addition, premature thymic involution results in a reduced export of naïve regulatory T cells, the fully suppressive clone. Alterations in peripheral tolerance concern costimulatory molecules as well as transcriptional and epigenetic mechanisms. Recent data underline the key role of regulatory T cells that suppress Th1 and Th17 effector cell responses and whose immunosuppressive activity is impaired in patients with multiple sclerosis. Those recent observations suggest that a defect in self-tolerance homeostasis might be the primary mover of multiple sclerosis leading to subsequent immune attacks, inflammation and neurodegeneration. The concept of multiple sclerosis as a consequence of the failure of central and peripheral tolerance mechanisms to maintain a self-tolerance state, particularly of regulatory T cells, may have therapeutic implications. Restoring normal thymic output and suppressive functions of regulatory T cells appears an appealing approach. Regulatory T cells suppress the general local immune response via bystander effects rather than through individual antigen-specific responses. Interestingly, the beneficial effects of currently approved immunomodulators (interferons β and glatiramer acetate) are associated with a restored regulatory T cell homeostasis. However, the feedback regulation between Th1 and Th17 effector cells and regulatory T cells is not so simple and tolerogenic mechanisms also involve other regulatory cells such as B cells, dendritic cells and CD56bright natural killer cells

    A Mechanism for the Polarity Formation of Chemoreceptors at the Growth Cone Membrane for Gradient Amplification during Directional Sensing

    Get PDF
    Accurate response to external directional signals is essential for many physiological functions such as chemotaxis or axonal guidance. It relies on the detection and amplification of gradients of chemical cues, which, in eukaryotic cells, involves the asymmetric relocalization of signaling molecules. How molecular events coordinate to induce a polarity at the cell level remains however poorly understood, particularly for nerve chemotaxis. Here, we propose a model, inspired by single-molecule experiments, for the membrane dynamics of GABA chemoreceptors in nerve growth cones (GCs) during directional sensing. In our model, transient interactions between the receptors and the microtubules, coupled to GABA-induced signaling, provide a positive-feedback loop that leads to redistribution of the receptors towards the gradient source. Using numerical simulations with parameters derived from experiments, we find that the kinetics of polarization and the steady-state polarized distribution of GABA receptors are in remarkable agreement with experimental observations. Furthermore, we make predictions on the properties of the GC seen as a sensing, amplification and filtering module. In particular, the growth cone acts as a low-pass filter with a time constant ∼10 minutes determined by the Brownian diffusion of chemoreceptors in the membrane. This filtering makes the gradient amplification resistent to rapid fluctuations of the external signals, a beneficial feature to enhance the accuracy of neuronal wiring. Since the model is based on minimal assumptions on the receptor/cytoskeleton interactions, its validity extends to polarity formation beyond the case of GABA gradient sensing. Altogether, it constitutes an original positive-feedback mechanism by which cells can dynamically adapt their internal organization to external signals

    Phylogenetic Position of the Trichomonad Parasite of Turkeys, Histomonas meleagridis (Smith) Tyzzer, Inferred from Small Subunit rRNA Sequence1

    No full text
    The phylogenetic position of the trichomonad, Histomonas meleagridis was determined by analysis of small subunit rRNAs. Molecular trees including all identified parabasalid sequences available in data bases were inferred by distance, parsimony, and likelihood methods. All reveal a close relationship between H. meleagridis, and Dientamoeba fragilis. Moreover, small subunit rRNAs of both amoeboid species have a reduced G + C content and increased chain length relative to other parabasalids. Finally, the rRNA genes from H. meleagridis and D. fragilis share a recent common ancestor with Tritrichomonasfoetus, which exhibits a more developed cytoskeleton. This indicates that Histomonas and Dientamoeba secondarily lost most of the typical trichomonad cytoskeletal structures and hence, do not represent primitive morphologies. A global phylogeny of parabasalids revealed significant discrepancies with morphology-based classifications, such as the polyphyly of most of the parabasalid families and classes included in our study.Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, Non-P.H.S.FLWINinfo:eu-repo/semantics/publishe
    corecore