141 research outputs found

    Secreted Gaussia Luciferase as a Biomarker for Monitoring Tumor Progression and Treatment Response of Systemic Metastases

    Get PDF
    Currently, only few techniques are available for quantifying systemic metastases in preclinical model. Thus techniques that can sensitively detect metastatic colonization and assess treatment response in real-time are urgently needed. To this end, we engineered tumor cells to express a naturally secreted Gaussia luciferase (Gluc), and investigated its use as a circulating biomarker for monitoring viable metastatic or primary tumor growth and their treatment responses.We first developed orthotopic primary and metastatic breast tumors with derivative of MDA-MB-231 cells expressing Gluc. We then correlated tumor burden with Gluc activity in the blood and urine along with bioluminescent imaging (BLI). Second, we utilized blood Gluc assay to monitor treatment response to lapatinib in an experimental model of systemic metastasis. We observed good correlation between the primary tumor volume and Gluc concentration in blood (R(2) = 0.84) and urine (R(2) = 0.55) in the breast tumor model. The correlation deviated as a primary tumor grew due to a reduction in viable tumor fraction. This was also supported by our mathematical models for tumor growth to compare the total and viable tumor burden in our model. In the experimental metastasis model, we found numerous brain metastases as well as systemic metastases including bone and lungs. Importantly, blood Gluc assay revealed early growth of metastatic tumors before BLI could visualize their presence. Using secreted Gluc, we localized systemic metastases by BLI and quantitatively monitored the total viable metastatic tumor burden by blood Gluc assay during the course of treatment with lapatinib, a dual tyrosine kinase inhibitor of EGFR and HER2.We demonstrated secreted Gluc assay accurately reflects the amount of viable cancer cells in primary and metastatic tumors. Blood Gluc activity not only tracks metastatic tumor progression but also serves as a longitudinal biomarker for tumor response to treatments

    Tissue-specific splicing regulator Fox-1 induces exon skipping by interfering E complex formation on the downstream intron of human F1γ gene

    Get PDF
    Fox-1 is a regulator of tissue-specific splicing, via binding to the element (U)GCAUG in mRNA precursors, in muscles and neuronal cells. Fox-1 can regulate splicing positively or negatively, most likely depending on where it binds relative to the regulated exon. In cases where the (U)GCAUG element lies in an intron upstream of the alternative exon, Fox-1 protein functions as a splicing repressor to induce exon skipping. Here we report the mechanism of exon skipping regulated by Fox-1, using the hF1γ gene as a model system. We found that Fox-1 induces exon 9 skipping by repressing splicing of the downstream intron 9 via binding to the GCAUG repressor elements located in the upstream intron 8. In vitro splicing analyses showed that Fox-1 prevents formation of the pre-spliceosomal early (E) complex on intron 9. In addition, we located a region of the Fox-1 protein that is required for inducing exon skipping. Taken together, our data show a novel mechanism of how RNA-binding proteins regulate alternative splicing

    Development of a large area gas photomultiplier with GEM/μ\muPIC

    Full text link
    We are developing a new photon detector with micro pattern gaseous detectors. A semitransparent CsI photocathode is combined with 10cm×\times10cm GEM/μ\muPIC for the first prototype which is aimed for the large liquid Xe detectors. Using Ar+C2_2H6_6 (10%) gas, we achieved the gas gain of 10510^5 which is enough to detect single photoelectron. We, then, irradiated UV photons from a newly developed solid scintillator, LaF3_3(Nd), to the detector and successfully detected single photoelectron.Comment: Poster presentation at ICHEP08 Philadelphia, USA, July 2008. 3 pages, LaTeX, 4 eps figure
    corecore