69 research outputs found

    Multipoint analysis of reduced 125I-meta-iodobenzylguanidine uptake and norepinephrine turnover in the hearts of mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine-induced parkinsonism

    Get PDF
    Introduction125I-Meta-iodobenzylguanidine (MIBG) cardiac uptake is reduced in mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP)-induced parkinsonism, although the cause of disturbance of norepinephrine (NE) turnover is unclear.MethodsC57BL6 mice (15 weeks old) were divided into six groups (n=14 each) according to the timing of MPTP injection (40 mg/kg) before 125I-MIBG: Group A, control (no MPTP injection); Group B, 1 day; Group C, 4 days; Group D, 7 days; Group E, 21 days; Group F, 7, 14 and 21 days. 125I-MIBG (0.185 MBq) was injected and the cardiac percentage injected dose per gram of tissue (%ID/g), dopamine (DA) and NE concentrations were measured. The cardiac maximal binding potential (Bmax) of NE transporter (NET) was also calculated in 20 mice per group.ResultsThe %ID/g of B, C, D, E and F mice were significantly lower than in A; those of C, D and E were significantly higher than in B; and that of F was significantly lower than in E. The DA concentrations were similar among all groups. The NE concentrations of B, C and F mice were significantly lower than in A, while those of C, D, E and F were significantly higher than in B, and that of F was significantly lower than in E. The Bmax of NET in B was significantly lower than in A.ConclusionsThus, MPTP causes rapid reductions in cardiac 125I-MIBG uptake and Bmax of NET, followed by partial recovery of 125I-MIBG uptake. Changes in cardiac 125I-MIBG uptake and NE turnover were closely related in postganglionic cardiac sympathetic nerve terminals in mice with MPTP-induced parkinsonism

    Results of Proton Beam Therapy without Concurrent Chemotherapy for Patients with Unresectable Stage III Non-small Cell Lung Cancer

    Get PDF
    Introduction:This study was performed retrospectively to evaluate the outcome of patients with stage III non-small cell lung cancer (NSCLC) after proton beam therapy (PBT) alone.Methods:The subjects were 57 patients with histologically confirmed NSCLC (stage IIIA/IIIB: 24/33) who received PBT without concurrent chemotherapy. The cohort included 32 cases of squamous cell carcinoma, 18 adenocarcinoma, and 7 non-small cell carcinoma. Lymph node metastases were N0 7, N1 5, N2 30, and N3 15. Planned total doses ranged from 50 to 84.5 GyE (median, 74 GyE).Results:Planned treatment was completed in 51 patients (89%). At the time of analysis, 20 patients were alive, and the median follow-up periods were 16.2 months for all patients and 22.2 months for survivors. The median overall survival period was 21.3 months (95% confidence interval: 14.2–28.4 months), and the 1- and 2-year overall survival rates were 65.5% (52.9–78.0%) and 39.4% (25.3–53.5%), respectively. Disease progression occurred in 38 patients, and the 1- and 2-year progression-free survival rates were 36.2% (23.1–49.4%) and 24.9% (12.7–37.2%), respectively. Local recurrence was observed in 13 patients, and the 1- and 2-year local control rates were 79.1% (66.8–91.3%) and 64.1% (47.5–80.7%), respectively. Grade ≥3 lung toxicity was seen in six patients, esophageal toxicity occurred at grade ⩽2, and there was no cardiac toxicity.Conclusion:The prognosis of patients with unresectable stage III NSCLC is poor without chemotherapy. Our data suggest that high-dose PBT is beneficial and tolerable for these patients

    In Vivo 6-([18F]Fluoroacetamido)-1-hexanoicanilide PET Imaging of Altered Histone Deacetylase Activity in Chemotherapy-Induced Neurotoxicity

    Get PDF
    Background. Histone deacetylases (HDACs) regulate gene expression by changing histone deacetylation status. Neurotoxicity is one of the major side effects of cisplatin, which reacts with deoxyribonucleic acid (DNA) and has excellent antitumor effects. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor with neuroprotective effects against cisplatin-induced neurotoxicity. Purpose. We investigated how cisplatin with and without SAHA pretreatment affects HDAC expression/activity in the brain by using 6-([18F]fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) as a positron emission tomography (PET) imaging agent for HDAC IIa. Materials and Methods. [18F]FAHA and [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG) PET studies were done in 24 mice on 2 consecutive days and again 1 week later. The mice were divided into three groups according to drug administration between the first and second imaging sessions (Group A: cisplatin 2 mg/kg, twice; Group B: cisplatin 4 mg/kg, twice; Group C: cisplatin 4 mg/kg, twice, and SAHA 300 mg/kg pretreatment, 4 times). Results. The value of [18F]FAHA was increased and the percentage of injected dose/tissue g (% ID/g) of [18F]FDG was decreased in the brains of animals in Groups A and B. The value of [18F]FAHA and % ID/g of [18F]FDG were not significantly different in Group C. Conclusions. [18F]FAHA PET clearly showed increased HDAC activity suggestive of cisplatin neurotoxicity in vivo, which was blocked by SAHA pretreatment

    In Vivo

    Get PDF
    Background. Histone deacetylases (HDACs) regulate gene expression by changing histone deacetylation status. Neurotoxicity is one of the major side effects of cisplatin, which reacts with deoxyribonucleic acid (DNA) and has excellent antitumor effects. Suberoylanilide hydroxamic acid (SAHA) is an HDAC inhibitor with neuroprotective effects against cisplatin-induced neurotoxicity. Purpose. We investigated how cisplatin with and without SAHA pretreatment affects HDAC expression/activity in the brain by using 6-([18F]fluoroacetamido)-1-hexanoicanilide ([18F]FAHA) as a positron emission tomography (PET) imaging agent for HDAC IIa. Materials and Methods. [18F]FAHA and [18F]fluoro-2-deoxy-2-D-glucose ([18F]FDG) PET studies were done in 24 mice on 2 consecutive days and again 1 week later. The mice were divided into three groups according to drug administration between the first and second imaging sessions (Group A: cisplatin 2 mg/kg, twice; Group B: cisplatin 4 mg/kg, twice; Group C: cisplatin 4 mg/kg, twice, and SAHA 300 mg/kg pretreatment, 4 times). Results. The Ki value of [18F]FAHA was increased and the percentage of injected dose/tissue g (% ID/g) of [18F]FDG was decreased in the brains of animals in Groups A and B. The Ki value of [18F]FAHA and % ID/g of [18F]FDG were not significantly different in Group C. Conclusions. [18F]FAHA PET clearly showed increased HDAC activity suggestive of cisplatin neurotoxicity in vivo, which was blocked by SAHA pretreatment

    Concurrent chemoradiotherapy using proton beams for unresectable locally advanced pancreatic cancer

    Get PDF
    Background and purposeWe investigated clinical outcomes of proton beam concurrent chemoradiotherapy (CCRT) for unresectable, locally advanced pancreatic cancer (LAPC) patients.Materials and methodsRecords from 42 unresectable LAPC patients (21 male and 21 female, 39–83 years old) with IIB/III clinical staging of 1/41 treated by proton beam CCRT were retrospectively reviewed. Twelve patients received a conventional 50 Gray equivalents (GyE) in 25 fractions protocol and 30 others received a higher dose protocol of 54.0–67.5 GyE in 25–33 fractions. Gemcitabine or S-1 (Tegafur, Gimeracil and Oteracil) was used concurrently. Toxicity, overall survival (OS) and local control (LC) were examined.ResultsAcute adverse events of grades 1, 2, 3 and 4 were found in 4, 15, 17 and 2 patients, respectively. All grade 3 and 4 events were hematologic. Late adverse events of grades 1 and 2 were found in 3 and 2 patients, respectively. No late adverse effects of grade 3 or higher were observed. The 1-year/2-year OS rates from the start of CCRT were 77.8/50.8% with median survival time (MST) of 25.6 months. The 1-year/2-year LC rate from CCRT start was 83.3/78.9% with a median time to local recurrence of more than 36 months. Total irradiation dose was the only significant factor in univariate analyses of OS and LC (p = 0.015 and 0.023, respectively).ConclusionProton beam CCRT lengthened survival periods compared to previous photon CCRT data and higher dose irradiation prolonged LC and OS for unresectable LAPC patients. Proton beam therapy is therefore safe and effective in these cases

    A validated proton beam therapy patch-field protocol for effective treatment of large hepatocellular carcinoma

    Get PDF
    Development of a curative local treatment for large hepatocellular carcinoma (HCC) is an important issue. Here, we investigated the dose homogeneity, safety and antitumor effectiveness of proton beam therapy (PBT) using a patch-field technique for large HCC. Data from nine patients (aged 52–79 years) with large HCC treated with patch-field PBT were investigated. The cranial–caudal diameters of the clinical target volumes (CTVs) were 15.0–18.6 cm (median 15.9). The CTV was divided cranially and caudally while both isocenters were aligned along the cranial–caudal axis and overlap of the cranial and caudal irradiation fields was set at 0–0.5 mm. Multileaf collimators were used to eliminate hot or cold spots. Total irradiation doses were 60–76.4 Gy equivalents. Irradiation doses as a percentage of the prescription dose (from the treatment planning system) around the junction were a minimum of 93–105%, a mean of 99–112%, and a maximum of 105–120%. Quality assurance (QA) was assessed in the cranial and caudal irradiation fields using imaging plates. Acute adverse effects of Grade 3 were observed in one patient (hypoalbuminemia), and a late adverse effect of Grade 3 was observed in one patient (liver abscess). Child–Pugh class elevations were observed in four patients (A to B: 3; B to C: 1). Overall survival rates at 1 and 2 years were 55 and 14%, respectively, with a median overall survival of 13.6 months. No patients showed local recurrence. Patch-field PBT supported by substantial QA therefore is one of the treatment options for large HCC
    corecore