8,567 research outputs found
Dynamical mass generation by source inversion: Calculating the mass gap of the Gross-Neveu model
We probe the U(N) Gross-Neveu model with a source-term . We
find an expression for the renormalization scheme and scale invariant source
, as a function of the generated mass gap. The expansion of this
function is organized in such a way that all scheme and scale dependence is
reduced to one single parameter d. We get a non-perturbative mass gap as the
solution of . In one loop we find that any physical choice for d
gives good results for high values of N. In two loops we can determine d
self-consistently by the principle of minimal sensitivity and find remarkably
accurate results for N>2.Comment: 13 pages, 3 figures, added referenc
Lepton Flavor Violation in Supersymmetric SO(10) Grand Unified Models
The study for lepton flavor violation combined with the neutrino oscillation
may provide more information about the lepton flavor structure of the grand
unified theory. In this paper, we study two lepton flavor violation processes,
and , in the context of supersymmetric SO(10)
grand unified models. We find the two processes are both of phenomenological
interest. In particular the latter may be important in some supersymmetric
parameter space where the former is suppressed. Thus, Z-dacay may offer another
chance for looking for lepton flavor violation.Comment: 26 pages, 10 figure
Leptogenesis with Almost Degenerate Majorana Neutrinos
We investigate the leptogenesis with almost degenerate neutrinos, in the
framework of democratic mass matrix, which naturally explains the large mixing
angles for neutrino oscillations as well as quark masses and mixing matrix. We
find that the baryon asymmetry in the present universe is explained via the
decays of right-handed neutrinos produced nonthermally by the inflaton decay.
The model predicts neutrinoless double beta decays accessible in near future
experiments.Comment: 17 pages, LaTeX, 2 figure
Neutrinos and Gauge Unification
The approximate unification of gauge couplings is the best indirect evidence
for low-energy supersymmetry, although it is not perfect in its simplest
realizations. Given the experimental evidence for small non-zero neutrino
masses, it is plausible to extend the MSSM with three right-handed neutrino
chiral multiplets, with large Majorana masses below the unification scale, so
that a see-saw mechanism can be implemented. In this extended MSSM, the
unification prediction for the strong gauge coupling constant at M_Z can be
lowered by up to \sim 5%, bringing it closer to the experimental value at
1\sigma, therefore improving significantly the accuracy of gauge coupling
unification.Comment: 5 pages, LaTeX, 1 figur
Nearly Bi-Maximal Neutrino Mixing, Muon g-2 Anomaly and Lepton-Flavor-Violating Processes
We interpret the newly observed muon g-2 anomaly in the framework of a
leptonic Higgs doublet model with nearly degenerate neutrino masses and nearly
bi-maximal neutrino mixing. Useful constraints are obtained on the rates of
lepton-flavor-violating rare decays ,
and as well as the - conversion ratio .
We find that , and
depend crucially on possible non-zero but samll values of the
neutrino mixing matrix element , and they are also sensitive to the
Dirac-type CP-violating phase. In particular, we show that , and are approximately in the ratio if is much larger than , and in the
ratio if is much lower than , where and are the corresponding mass-squared
differences of atmospheric and solar neutrino oscillations.Comment: LaTex 6 pages (2 PS figures). Phys. Rev. D (in printing
Constraints on R-parity violating couplings from LEP/SLD hadronic observables
We analyze the one loop corrections to hadronic Z decays in an R-parity
violating extension to the Minimal Supersymmetric Standard Model (MSSM).
Performing a global fit to all the hadronic observables at the Z-peak, we
obtain stringent constraints on the R-violating couplings constants lambda' and
lambda''. As a result of the strong constraints from the b asymmetry parameters
A_b and A_FB(b), we find that the couplings lambda'{i31}, lambda'{i32}, and
lambda''{321} are ruled out at the 1 sigma level, and that lambda'{i33} and
lambda''{33i} are ruled out at the 2 sigma level. We also obtain Bayesian
confidence limits for the R-violating couplings.Comment: 30 pages, 19 postscript figures, REVTeX, new section 8 on Bayesian
confidence limits adde
Wind field and sex constrain the flight speeds of central-place foraging albatrosses
By extracting energy from the highly dynamic wind and wave fields that typify pelagic habitats, albatrosses are able to proceed almost exclusively by gliding flight. Although energetic costs of gliding are low, enabling breeding albatrosses to forage hundreds to thousands of kilometers from their colonies, these and time costs vary with relative wind direction. This causes albatrosses in some areas to route provisioning trips to avoid headwind flight, potentially limiting habitat accessibility during the breeding season. In addition, because female albatrosses have lower wing loadings than males, it has been argued that they are better adapted to flight in light winds, leading to sexual segregation of foraging areas. We used satellite telemetry and immersion logger data to quantify the effects of relative wind speed, sex, breeding stage, and trip stage on the ground speeds (Vg) of four species of Southern Ocean albatrosses breeding at South Georgia. Vg was linearly related to the wind speed component in the direction of flight (Vwf), its effect being greatest on Wandering Albatrosses Diomedea exulans, followed by Black-browed Albatrosses Thalassarche melanophrys, Light-mantled Sooty Albatrosses Phoebatria palpebrata, and Gray-headed Albatrosses T. chrysostoma. Ground speeds at Vwf = 0 were similar to airspeeds predicted by aerodynamic theory and were higher in males than in females. However, we found no evidence that this led to sexual segregation, as males and females experienced comparable wind speeds during foraging trips. Black-browed, Gray-headed, and Light-mantled Sooty Albatrosses did not engage in direct, uninterrupted bouts of flight on moonless nights, but Wandering Albatrosses attained comparable Vg night and day, regardless of lunar phase. Relative flight direction was more important in determining Vg than absolute wind speed. When birds were less constrained in the middle stage of foraging trips, all species flew predominantly across the wind. However, in some instances, commuting birds encountered headwinds during outward trips and tail winds on their return, with the result that Vg was 1.0–3.4 m/s faster during return trips. This, we hypothesize, could result from constraints imposed by the location of prey resources relative to the colony at South Georgia or could represent an energy optimization strategy
Electron Self Energy for Higher Excited S Levels
A nonperturbative numerical evaluation of the one-photon electron self energy
for the 3S and 4S states with charge numbers Z=1 to 5 is described. The
numerical results are in agreement with known terms in the expansion of the
self energy in powers of Zalpha.Comment: 3 pages, RevTeX, to appear in Phys. Rev.
Constraints on R-parity violating couplings from lepton universality
We analyze the one loop corrections to leptonic W and Z decays in an R-parity
violating extension to the Minimal Supersymmetric Standard Model (MSSM). We
find that lepton universality violation in the Z line-shape variables alone
would strengthen the bounds on the magnitudes of the lambda' couplings, but a
global fit on all data leaves the bounds virtually unchanged at |lambda'_{33k}|
< 0.42 and |lambda'_{23k}| < 0.50 at the 2 sigma level. Bounds from W decays
are less stringent: |lambda'_{33k}| < 2.4 at 2 sigma, as a consequence of the
weaker Fermilab experimental bounds on lepton universality violation in W
decays. We also point out the potential of constraining R-parity violating
couplings from the measurement of the Upsilon invisible width.Comment: 26pages, 8 postscript figures, REVTeX. Updated references. Typos
correcte
Neutrino Exotica in the Skew E_6 Left-Right Model
With the particle content of the 27 representation of E_6, a skew left-right
supersymmetric gauge model was proposed many years ago, with a variety of
interesting phenomenological implications. The neutrino sector of this model
offers a natural framework for obtaining small Majorana masses for nu_e, nu_mu,
and nu_tau, with the added bonus of accommodating 2 light sterile neutrinos.Comment: 12 pages, no figure, conclusion clarifie
- …