142 research outputs found

    Method of Tracking and Analysis of Fluorescent-Labeled Cells Using Automatic Thresholding and Labeling

    Full text link
    High-throughput screening using cell images is an efficient method for screening new candidates for pharmaceutical drugs. To complete the screening process, it is essential to have an efficient process for analyzing cell images. This paper presents a new method for efficiently tracking cells and quantitatively detecting the signal ratio between cytoplasm and nuclei. Existing methods include those that use image processing techniques and those that utilize artificial intelligence (AI). However, these methods do not consider the correspondence of cells between images, or require a significant amount of new learning data to train AI. Therefore, our method uses automatic thresholding and labeling algorithms to compare the position of each cell between images, and continuously measure and analyze the signal ratio of cells. This paper describes the algorithm of our method. Using the method, we experimented to investigate the effect of the number of opening and closing operations during the binarization process on the tracking of the cells. Through the experiment, we determined the appropriate number of opening and closing processes.Comment: 5 pages, 7 figure

    Search for Tetraneutron by Pion Double Charge Exchange Reaction at J-PARC

    Full text link
    Tetraneutron (4n^4n) has come back in the limelight, because of recent observation of a candidate resonant state at RIBF. We propose to investigate the pion double charge exchange (DCX) reaction, i.e. 4He(π,π+)^4\mathrm{He}({\pi}^- , {\pi}^+), as an alternative way to populate tetraneutron. An intense π{\pi}^- beam with the kinetic energy of ~850 MeV, much higher than that in past experiments at LAMPF and TRIUMF, will open up a possibility to improve the experimental sensitivity of the formation cross section, which will be much smaller than hitherto known DCX cross sections such as 9Be(π,π+)9He (g.s.)^9\mathrm{Be}({\pi}^-, {\pi}^+)^9\mathrm{He}\ (g.s.).Comment: 4 pages, 1 figure; proceedings of the 14th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU2016), Kyoto, Japan, 25-30 July 201

    Study of hadron interactions in a lead-emulsion target

    Full text link
    Topological and kinematical characteristics of hadron interactions have been studied using a lead-emulsion target exposed to 2, 4 and 10 GeV/c hadron beams. A total length of 60 m π\pi^- tracks was followed using a high speed automated emulsion scanning system. A total of 318 hadron interaction vertices and their secondary charged particle tracks were reconstructed. Measurement results of interaction lengths, charged particle multiplicity, emission angles and momenta of secondary charged particles are compared with a Monte Carlo simulation and appear to be consistent. Nuclear fragments emitted from interaction vertices were also detected by a newly developed emulsion scanning system with wide-angle acceptance. Their emission angle distributions are in good agreement with the simulated distributions. Probabilities of an event being associated with at least one fragment track are found to be greater than 50% for beam momentum P>4P > 4 GeV/c and are well reproduced by the simulation. These experimental results validate estimation of the background due to hadron interactions in the sample of τ\tau decay candidates in the OPERA νμντ\nu_{\mu} \to \nu_{\tau} oscillation experiment.Comment: 14 pages, 11 figure

    Augmentation of smad‐dependent BMP signaling in neural crest cells causes craniosynostosis in mice

    Full text link
    Craniosynostosis describes conditions in which one or more sutures of the infant skull are prematurely fused, resulting in facial deformity and delayed brain development. Approximately 20% of human craniosynostoses are thought to result from gene mutations altering growth factor signaling; however, the molecular mechanisms by which these mutations cause craniosynostosis are incompletely characterized, and the causative genes for diverse types of syndromic craniosynostosis have yet to be identified. Here, we show that enhanced bone morphogenetic protein (BMP) signaling through the BMP type IA receptor (BMPR1A) in cranial neural crest cells, but not in osteoblasts, causes premature suture fusion in mice. In support of a requirement for precisely regulated BMP signaling, this defect was rescued on a Bmpr1a haploinsufficient background, with corresponding normalization of Smad phosphorylation. Moreover, in vivo treatment with LDN‐193189, a selective chemical inhibitor of BMP type I receptor kinases, resulted in partial rescue of craniosynostosis. Enhanced signaling of the fibroblast growth factor (FGF) pathway, which has been implicated in craniosynostosis, was observed in both mutant and rescued mice, suggesting that augmentation of FGF signaling is not the sole cause of premature fusion found in this model. The finding that relatively modest augmentation of Smad‐dependent BMP signaling leads to premature cranial suture fusion suggests an important contribution of dysregulated BMP signaling to syndromic craniosynostoses and potential strategies for early intervention.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/1/jbmr1857.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/2/jbmr1857-0008-sm-SupplFigS8.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/3/jbmr1857-0004-sm-SupplFigS4.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/4/jbmr1857-0009-sm-SupplFigS9.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/5/jbmr1857-0005-sm-SupplFigS5.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/6/jbmr1857-0001-sm-SupplFigS1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/7/jbmr1857-0006-sm-SupplFigS6.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/8/jbmr1857-0002-sm-SupplFigS2.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/9/jbmr1857-0007-sm-SupplFigS7.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/98343/10/jbmr1857-0003-sm-SupplFigS3.pd

    Expression of human mutant cyclin dependent kinase 4, Cyclin D and telomerase extends the life span but does not immortalize fibroblasts derived from loggerhead sea turtle (Caretta caretta)

    Get PDF
    Conservation of the genetic resources of endangered animals is crucial for future generations. The loggerhead sea turtle (Caretta caretta) is a critically endangered species, because of human hunting, hybridisation with other sea turtle species, and infectious diseases. In the present study, we established primary fibroblast cell lines from the loggerhead sea turtle, and showed its species specific chromosome number is 2n = 56, which is identical to that of the hawksbill and olive ridley sea turtles. We first showed that intensive hybridization among multiple sea turtle species caused due to the identical chromosome number, which allows existence of stable hybridization among the multiple sea turtle species. Expressions of human-derived mutant Cyclin-dependent kinase 4 (CDK4) and Cyclin D dramatically extended the cell culture period, when it was compared with the cell culture period of wild type cells. The recombinant fibroblast cell lines maintained the normal chromosome condition and morphology, indicating that, at the G1/S phase, the machinery to control the cellular proliferation is evolutionally conserved among various vertebrates. To our knowledge, this study is the first to demonstrate the functional conservation to overcome the negative feedback system to limit the turn over of the cell cycle between mammalian and reptiles. Our cell culture method will enable the sharing of cells from critically endangered animals as research materials

    Interaction between Leptospiral Lipopolysaccharide and Toll-like Receptor 2 in Pig Fibroblast Cell Line, and Inhibitory Effect of Antibody against Leptospiral Lipopolysaccharide on Interaction

    Get PDF
    Leptospiral lipopolysaccharide (L-LPS) has shown potency in activating toll-like receptor 2 (TLR2) in pig fibroblasts (PEFs_NCC1), and causes the expression of proinflammatory cytokines. However, the stimulation by L-LPS was weak eliciting the function of TLR2 sufficiently in pig innate immunity responses during Leptospira infection. In this study, the immune response of pig embryonic fibroblast cell line (PEFs_SV40) was investigated and was found to be the high immune response, thus TLR2 is the predominate receptor of L-LPS in pig cells. Further, we found a strategy using the antibody against L-LPS, to prevent L-LPS interaction with TLR2 in pig cells which could impact on immune activation

    Intestinal Bacteria as Powerful Trapping Lifeforms for the Elimination of Radioactive Cesium

    Get PDF
    In March 2011, an accident at the Fukushima Daiichi Nuclear Power Plant led to major problems, including the release of radionuclides such as Cesium (Cs)-137 into the environment. Ever since this accident, Cs-137 in foods has become a serious problem. In this study, we determined the concentration of Cs-137 in the feces, urine, and ruminal contents of cattle and demonstrated the possibility of its elimination from the body by intestinal bacteria. The results revealed a high Cs-137 concentration in the feces; in fact, this concentration was higher than that in skeletal muscles and other samples from several animals. Furthermore, intestinal bacteria were able to trap Cs-137, showing an uptake ratio within the range of 38–81% in vitro. This uptake appeared to be mediated through the sodium–potassium (Na+-K+) ion pump in the bacterial cell membrane. This inference was drawn based on the fact that the uptake ratio of Cs-137 was decreased in media with high potassium concentration. In addition, it was demonstrated that intestinal bacteria hindered the trapping of Cs-137 by the animal. Cattle feces showed high concentration of Cs-137 and intestinal bacteria trapped Cs-137. This study is the first report showing that intestinal bacteria contribute to the elimination of Cs-137 from the body
    corecore