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The Anti-Proliferative Effects of the CHFR Depend on the
Forkhead Associated Domain, but not E3 Ligase Activity
Mediated by Ring Finger Domain
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Abstract

The CHFR protein comprises fork head associated- (FHA) and RING-finger (RF) domain and is frequently downregulated in
human colon and gastric cancers up to 50%. The loss of CHFR mRNA expression is a consequence of promoter methylation,
suggesting a tumor suppressor role for this gene in gastrointestinal carcinogenesis. In terms of the biological functions of
CHFR, it has been shown to activate cell cycle checkpoint when cells are treated with microtubule depolymerizing agents.
Furthermore, CHFR was reported to have E3 ligase activity and promote ubiquitination and degradation of oncogenic
proteins such as Aurora A and polo-like kinase 1. However, molecular pathways involved in the tumor suppressive function
of CHFR are not yet clear since the two established roles of this protein are likely to inhibit cell growth. In this study, we have
identified that the FHA domain of CHFR protein is critical for growth suppressive properties, whereas the RF and cysteine
rich domains (Cys) are not required for this function. In contrast, the RF and Cys domains are essential for E3 ligase activity of
CHFR. By the use of a cell cycle checkpoint assay, we also confirmed that the FHA domain of CHFR plays an important role in
initiating a cell cycle arrest at G2/M, indicating a functional link exists between the anti-proliferative effects and checkpoint
function of this tumor suppressor protein via this domain. Collectively, our data show that the checkpoint function of the
FHA domain of CHFR is a core component of anti-proliferative properties against the gastrointestinal carcinogenesis.
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Introduction

CHFR (Checkpoint protein with Forkhead associated and Ring

finger domain) was first isolated by a homology screening of EST

cDNA clones harboring an FHA domain [1]. The CHFR protein

is characterized by the existence of two domain structures that are

well conserved across different species, namely the FHA and

RING finger domains (RF) [1]. CHFR is in fact the only protein in

vertebrates that contains both of these functional domains.

The FHA domain of CHFR has been reported to arrest the cell

cycle under mitotic stress conditions caused by microtubule

depolymerizing agents such as nocodazole, and this moiety thus

confers a mitotic checkpoint function upon this protein [2–6]. In

terms of the mechanisms underlying this checkpoint function,

CHFR has been shown to exclude Cyclin B1 from the nucleus,

resulting in the arrest of the cell cycle at around the G2 phase [7].

Other checkpoint regulators with an FHA domain, such as CHK2

and NBS1, have also shown similar features and arrest the cell

cycle in response to DNA damage and replication blocks [8,9].

These checkpoint proteins containing FHA domain have been

shown to function as tumor suppressors, although the detailed

molecular mechanisms are not yet fully elucidated. For example,

the inactivation of the CHK2 and NBS1 proteins increases the

predisposition of cells to cancer development [8,10–14]. The

functional inactivation of CHFR due to promoter methylation and

the consequent loss of mRNA expression is frequently observed in

human colon and gastric cancers [4,15–19], suggesting its possible

role also as a tumor suppressor. The functional loss of these

checkpoint proteins is likely to disrupt the cell cycle arrest response

to cellular stress, thus leading to the accumulation of mutations

and replication errors in the genome, a prerequisite for malignant

transformation.

The RING-finger domain is a characteristic feature of the E3

ligase proteins [1] and is thought to determine the substrate

specificity for ubiquitination reactions. As an example, the RING-

finger protein cdc20 is known to serve as an E3 ligase for the

anaphase promoting complex/cyclosome (APC/C) [20], and

Cyclin B is also one of its substrates [20]. Cyclin B proteins that

have been polyubiquitinated by cdc20 are rapidly transferred to

the proteasome and degraded. CHFR was shown to play a role as

E3 ligase for the polyubiqutination of Aurora A and Polo-like-

kinase 1 [21,22], possibly resulting in the degradation of these

proteins. In fact, mouse embryonic fibroblasts (MEF) derived from

Chfr knockout mice show elevated protein levels of Aurora A and

display chromosome abnormalities [21]. The inactivation of

CHFR may thus cause the up-regulation of these proteins, which

are known mitotic kinases and are frequently observed to be

overexpressed in various types of human malignant tumors, such

as bladder and colon cancers [23,24]. Elevated levels of Aurora A

and Plk1 are known to induce abnormal mitotic cell division and
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cause karyotype abnormalities or malignant transformation

[25,26]. The functional loss of CHFR could therefore result in

the accumulation of oncogenic proteins (Aurora A and Plk1) and

induce genomic instability.

To date, two possible molecular pathways have been considered

as the mechanisms underlying the tumor suppressor function of

CHFR. These are the checkpoint regulation and E3 ligase

functions of this protein. However, it is difficult to draw any

conclusions from the findings of previous studies about which of

these roles is the most critical for growth suppression, since

functional analyses of the checkpoint and E3 ligase activity of

CHFR have only been performed independently of each other

thus far [1,22,27–29]. We initially focused on the E3 ligase activity

as a possible pathway for the growth suppressive properties of

CHFR as our previous data have shown that degradation by the

proteasome is the major rate limiting step in the control of the

Aurora A protein levels [30]. If the E3 ligase activity of CHFR is

more important for growth suppression, as we initially expected,

the core region of this tumor suppressor that is required for its

anti-proliferative effects was anticipated to be the RF domain.

In our current study, we have investigated the molecular

pathways underlying the growth suppressive functions of CHFR

by utilizing genetic rescue experiments with colon cancer cell lines

in which endogenous CHFR is epigenetically inactivated.

Materials and Methods

CHFR plasmids
A cDNA fragment of human CHFR (NIH Mammalian Gene

Collection ID: 19963) was obtained by RT-PCR from a human

pancreatic cancer cell line (Panc1) based on a method described

previously [30]. A hemagglutinin (HA) protein tag sequence was

then introduced at the amino terminus of this recombinant CHFR

product and a Kozak sequence was inserted just upstream of

the start codon of the HA protein tag. Mutant cDNA fragments

were created using the quick change PCR kit (Stratagene) with

slight modifications [31]. To generate a DFHA mutant, a CHFR

cDNA fragment was generated that lacked the 110 amino acids

between the original start methionine and the end of the FHA

domain (MERPEEGKQS-EPEHNVAYLYESLS). An RF mutant

(DRF) was similarly designed by generating a truncated CHFR

cDNA lacking this 48 amino acid domain (CIICQDLLHD-

TCRCPVERICK). A TGA stop codon was inserted into the

CHFR cDNA to construct the cysteine rich domain mutant (DCys)

by producing a protein product lacking the 190 amino acids of this

region (VCPLQGSHAL-HICEQTRFKN).

Each cDNA was subcloned into the EcoRV site of pBluescript

SKII+ (Stratagene) by blunt end ligation, and the resulting

constructs were validated in a cycle sequencing reaction with an

ABI 310 genetic analyzer (Applied Biosystems). Both the wild-type

and mutant CHFR cDNA fragments were also subcloned into an

LXIN retrovirus vector (Clontech), the pcDNA 3.1+ plasmid

(Invitrogen), and an IRES2-EGFP bicistronic expression vector

(Clontech). The retrovirus vectors were used in colony formation

assays, whereas the pcDNA 3.1+ vectors were used in an in vivo

ubiquitination assay and also in the cellular localization exper-

iments. The bicistronic vectors (IRES2-EGFP) were employed in

the checkpoint analyses.

Stable and transient expression of wild-type and mutant
CHFR proteins in cultured cells

HCT116, RKO and HeLa cells were cultured in Dulbecco’s

Modified Eagle’s Medium (DMEM; Sigma) supplemented with

10% fetal bovine serum (FBS), penicillin (100U/ml), and

streptomycin (50U/ml), at 37uC and 5% CO2. A PT67 retrovirus

packaging cell line was obtained from Clontech, and maintained

in DMEM with 10% FBS. Cells were maintained in an

exponential growth phase prior to use.

Retroviral constructs harboring wild-type or mutant human

CHFR cDNAs, were introduced into PT67 cells (Clontech) for

packaging using the lipofection method (Fugene 6, Roche). The

LXIN retroviral vector contains a neomycin cassette, and cells that

stably produced recombinant retroviruses were selected after two

weeks of culture in the presence of 1 mg/ml G418. The retroviral

supernatants were diluted 1:2 with normal DMEM containing

10% FBS and exposed to HCT116 or RKO cells with 400 mg/ml

of polybrane infection enhancer. Infected cells were further

selected with 1 mg/ml G418 for two weeks. To avoid cloning

bias, the whole cell population that showed resistance to G418 was

used in each experiment. For transient expression experiments,

cells at 70% confluency were transfected with 2.5 mg of the

indicated plasmids using the lipofection method (Lipofectamine

2000, Invitrogen), according to the manufacturer’s protocol.

Colony formation assay
16106 HCT116, RKO or HeLa cells were infected with

aliquots of LXIN retroviral supernatants from the PT67 packaging

cells for 48 h. When the infected cells reached confluence, they

were trypsinized and resuspended in 10 ml of DMEM supple-

mented with 10% FBS. 10 ml (HCT116) or 100 ml (RKO or

HeLa) aliquots of these cell suspensions were then seeded into

100 mm culture dishes (Nunc, 150350), and grown in G418

selection for two weeks as described above. G418-resistant colonies

were subsequently fixed in 4% paraformaldehyde in phosphate

buffered saline (PBS), and stained with hematoxilin. Images of the

stained dishes were captured using a high-resolution digital camera

with a macro lens (Fuji Film), and the numbers of colonies were

determined in each image using NIH image software. The average

colony numbers were then calculated from five dishes in three

independent experiments. Statistical significance was evaluated

with the Wilcoxon-Mann-Whitney U-test.

Measurement of the retrovirus titers of the producer cells
The conditioned medium of the producer cells was diluted 1:50

with distilled water and subjected to reverse transcription. The

copy number of the resulting retroviral cDNA was measured by

real-time PCR with a Retrovirus titer set (Takara Bio, Kyoto,

Japan). The average retrovirus copy number of per ml was

determined from five independent reactions. The reverse tran-

scriptase and real-time PCR reactions were performed according

to the manufacturer’s instructions.

Western blot analysis
Cells were lysed in ice-cold HIPS buffer (50 mM Tris-HCl,

pH 7.5, 150 mM NaCl, 1% Triton X-100) [30] and the resulting

whole cell lysates were subjected to 10% SDS-PAGE. The

separated proteins were then transferred to polyvinylidene

difluoride (PVDF) membranes (Immobilon P, Millipore). After

blocking with 7% non-fat dry milk-Tris buffered saline and 0.1%

Tween 20 (TBST), the membranes were probed with anti-HA

(High affinity HA 3F10, 1/5,000 dilution, Roche), and anti-a-

tubulin (DM-1A, 1/5,000 dilution, ICN Biomedicals) antibodies.

Blots were then incubated with horseradish peroxidase (HRP)-

conjugated rabbit anti-rat IgG (A5795, 1/5,000 dilution, Roche)

or donkey anti-mouse IgG (NA1093V, 1/5,000 dilution, GE

Healthcare Bioscience) secondary antibodies respectively, and

immunoreactive proteins were detected by enhanced chemilumi-

nescence (P90720, Millipore).

Tumor Suppressor CHFR
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In vivo ubiquitination assay
2.5 mg of wild-type and mutant CHFR pcDNA 3.1+ expression

plasmids, and an empty vector control, were introduced into

HCT116 cells at 70% confluency using the lipofection method

(Lipofectamine 2000, Invitrogen). 2.5 mg of pcDNA 3.1+ vector

harboring FLAG tagged ubiquitin (kindly provided by Dr. K.

Miyazono, Tokyo University) was co-transfected with these

constructs. After 20 h, the cells were treated with 25 mM of

MG132 (C2211, SIGMA) for 5 h, lysed in HIPS buffer, and

subjected to immunoprecipitation. A 500 mg aliquot of total

protein from the transfected HCT116 cells in 250 ml lysis solution

was mixed with 10 ml of the anti-HA affinity matrix (Roche) pre-

blocked with 2% bovine serum albumin (BSA), and incubated for

4 h with gentle rotation at 4uC. The affinity matrix was washed

with HIPS buffer three times, collected by centrifugation, and the

precipitated proteins were denatured in sample buffer containing

0.1M dithiothreitol (DTT), subjected to 7% SDS-PAGE and

transferred to a PVDF membrane. The transferred proteins were

then incubated with anti-HA (high affinity HA 3F10, 1/5,000

dilution, Roche), or anti-FLAG (monoclonal anti-FLAG M2, 1/

5,000 dilution, Sigma) antibodies. The secondary antibodies used

were as described above for the western blotting procedure.

Intracellular localization of CHFR protein
pcDNA3.1+ expression vectors were introduced into HCT116

cells using the lipofection method, as described earlier. Twenty-

four hours after transfection, the cells were fixed with 4%

paraformaldehyde and then treated with 0.5% Triton X-100

(both in PBS) for 5 min. The cells were preblocked with 1%

normal goat serum (NGS) in PBS for 30 min and incubated with

an anti-HA antibody (high affinity HA 3F10, 1:500 dilution,

Roche) for 1 h at room temperature. An alexa 488-conjugated

goat anti-rat IgG (Invitrogen) was used as the secondary antibody.

A rabbit PML antibody (PM001, 1/300 dilution, MBL) and alexa

594-conjugated goat anti-rabbit IgG (Invitrogen) were used to

detect PML nuclear foci. The cells were counter-stained in each

case with 1mM of Hoechst 33258 (B1155, Sigma) and staining

images were captured using an Axiovart (Zeiss) fluorescence

microscope.

Cell cycle checkpoint analysis
For checkpoint analysis, HCT116 cells were transfected with

IRES2-EGFP expression plasmids harboring wild-type or mutant

CHFR inserts for 5 h and then treated with nocodazole at a

concentration of 200 ng/ml (from a 100 mg/ml stock solution in

dimethyl sulfoxide, Sigma) for 16 h. After the nocodazole

treatment, the cells were fixed in 4% paraformaldehyde/PBS

and the numbers of mitotic cells, which show EGFP fluorescence,

were determined by microscopic examination. The average

percentage of the total EGFP-positive cells that were deemed to

be mitotic was calculated by counting approximately 100 cells

expressing either wild-type or mutant CHFR proteins.

Results

The expression of wild-type and mutant CHFR proteins in
colon cancer cells which lack the endogenous species

Colon cancer cells have lost the endogenous expression of

CHFR, and we thus anticipated that this would be an appropriate

cell system to elucidate the functional domain responsible for the

anti-proliferative effects of CHFR protein by genetic rescue. The

endogenous levels of CHFR mRNA were measured by real-time

RT-PCR in five pancreatic cancer cell lines and six colon cancer

cell lines (Fig. 1C). CHFR transcripts were detectable in each of the

pancreas cell lines tested but three colon cancer derived cell lines,

HCT116, RKO and DLD1, showed no expression of CHFR

mRNA.

The structures of the wild-type and mutant CHFR proteins are

shown in Figure 1A. Expression vectors for these proteins were

introduced transiently into HCT116 cells and subjected to western

blotting with anti-HA antibodies to determine whether the

predicted recombinant CHFR proteins were produced (Fig. 1B).

Positive bands were indeed detected at the expected molecular

weights (wild-type; 72 kDa, DFHA; 57 kDa, DRF; 66 kDa, DCys;

50 kDa), indicating that each CHFR protein product was

efficiently expressed.

The anti-proliferative effects of CHFR are dependent
upon the FHA domain and not the RF or Cys domains

To evaluate the effects of wild-type and mutant CHFR proteins

(DFHA, DRF and DCys) on cell proliferation, recombinant

retroviruses harboring the corresponding cDNAs were introduced

into HCT116 cells. There were no major differences found in the

resulting cell morphologies in each case, as shown in Figure 2A.

Substantial growth suppression was observed following the

introduction of the wild-type CHFR during G418 selection

(Fig. 2A). In addition, whereas the DRF and DCys mutants

showed growth suppressive effects that were almost identical to the

wild-type CHFR, the DFHA protein had minimal inhibitory

effects upon cell proliferation (Fig. 2A).

To more quantitatively evaluate the growth inhibitory effects of

the wild-type and mutant CHFR proteins, a colony formation

assay was carried out using the corresponding retrovirally infected

HCT116 cells under G418 selection (Fig. 2B and C). The

expression of wild-type, DRF and DCys proteins resulted in a

significant decrease in the number of G418-resistant colonies in

this experiment compared with the vector control (p,0.01),

whereas DFHA expressing cells did not show any reduction in

colony number. The same recombinant CHFR retroviruses were

also introduced into RKO cells and similar results were observed

(Fig. 2C).

To verify the titer of our recombinant CHFR retroviruses, the

virus copy numbers in the conditioned supernatant of the PT67

producer cells were measured by real-time PCR. As shown in

Figure 2D, no major differences could be observed in the

retrovirus copy number between the wild-type and mutant CHFR

retrovirus producer cells. We therefore concluded that the growth

suppressive effects of CHFR that we observed in these analyses are

not due to any differences in the titers of the producer cells.

Detection of wild-type and mutant CHFR proteins under
stable expression conditions

During their initial passages, significant growth suppression was

observed in HCT116 cells expressing exogenous wild-type, DRF

and DCys CHFR, as shown in Figures 2A–C. However, this

growth suppression becomes almost undetectable by passage 3.

The protein levels of each of these introduced CHFR products

were thus analyzed in these cells at passage 4 by western blotting.

As shown in Figure 2E, the levels of the wild-type, DRF and DCys

products were remarkably low when compared with DFHA

(Fig. 2E, left panel). The same analysis was undertaken in RKO

cells and produced essentially identical results (Fig. 2E, right

panel). A possible explanation for this phenomenon is that elevated

levels of wild-type, DRF and DCys proteins may cause a

substantial growth disadvantage, and thus cell populations which

express these introduced proteins at low levels undergo positive

selection with passage in culture.

Tumor Suppressor CHFR
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The E3 ligase activity of CHFR requires the RF and Cys
domains, but not the FHA domain

A series of in vivo ubiquitination assays were conducted using

HCT116 cell populations that transiently expressed the wild-type

and mutant CHFR proteins at similar levels (Fig 3, left panel). The

recombinant CHFR and its substrate proteins were immunopre-

cipitated from the corresponding cellular extracts with an anti-HA

antibody and the ubiquitination activity levels were then

monitored by western analysis with anti-FLAG antibodies to

detect high molecular weight bands as described in a previous

study [32]. As shown in the right panel of Figure 3, polyubiqui-

tinated proteins were detectable in cells expressing wild-type and

DFHA proteins but not the DRF and DCys mutants, which is

deemed to be substrates of CHFR. The mobilities of these

immunoprecipitated CHFR proteins were also not altered as a

result of polyubiquitination (Fig. 3, middle panel), indicating that

no self-ubiquitination had occurred in each case. From these

results, we concluded that E3 ligase activity of CHFR requires the

RF and Cys domains, but is unaffected by the deletion of the FHA

domain.

Analysis of the intracellular localization of wild type,
DFHA, DRF and DCys CHFR proteins by
immunofluorescence staining

A previous study has indicated that the FHA domain of the

CHFR protein is essential for its localization in promyelocytic

leukemia (PML) foci within the nucleus [33]. The intracellular

localization of the wild type and mutant CHFR proteins was

detected by immunostaining of HCT116 cells that exogenously

expressed these products. As shown in Figure 4, each of these

Figure 1. Schematic representation of the wild-type, DFHA, DRF and DCys forms of the CHFR protein tagged with HA, and
expression analysis of these proteins in a colon cancer-derived cell line that lacks endogenous CHFR mRNA. (A) The predicted protein
structures of the wild-type, DFHA, DRF and DCys CHFR proteins. N and C indicate the amino and carboxyl terminus, respectively. FHA, forkhead
associated domain; RF, ring finger domain; Cys, cysteine rich domain; HA-tag, hemagglutinin protein tag. (B) The detection of the wild-type, DFHA,
DRF and DCys forms of CHFR proteins transiently expressed in HCT116 cells by western blotting with anti-HA antibodies (upper panel). Cells were
transfected with HA-tagged empty vector (lane 1); wild-type CHFR (lane 2); DFHA (lane 3); DRF (lane 4); or DCys (lane 5). Tubulin was also detected as
a loading control (lower panel). (C) Endogenous CHFR mRNA expression levels detected by real-time PCR in the indicated pancreatic- and colon
cancer-derived cell lines. The relative levels of CHFR mRNA shown are normalized to beta-actin mRNA, the expression level of panc1 was set as 1.0,
and the average values of duplicate experiments were calculated.
doi:10.1371/journal.pone.0001776.g001

Tumor Suppressor CHFR
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Figure 2. Identification of the functional domain of the CHFR protein that confers its anti-proliferative effects. (A) The growth
appearance of HCT116 cells infected with retroviral vectors expressing the indicated CHFR products. Note that the wild-type CHFR, DRF and DCys
retroviruses suppressed the cell growth of the host cells and this was partially restored in the DFHA expressing cells. There were no differences,

Tumor Suppressor CHFR
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introduced CHFR species showed a diffuse nuclear localization

and no differences could be observed. Although the cells were

doubly stained with anti-HA and anti-PML antibodies, a

dominant accumulation of CHFR within the PML nuclear foci

was not evident for either the wild type or mutant proteins. From

these data, we conclude that the CHFR domains analyzed do not

impact upon the intracellular localization of this protein.

The checkpoint function of CHFR requires the FHA
domain only

The functional recovery of the checkpoint function of CHFR

was evaluated also in HCT116 cells after the exogenous

introduction of wild type and mutant CHFR proteins. Since the

transfection efficiency was limited to around 5% for the transient

expression vector, a bicistronic expression vector harboring the

CHFR wild type and mutant inserts was used in these experiments

(Fig. 5A). Since in this case the CHFR and EGFP protein products

are translated from the same mRNA, EGFP fluorescence can be

used as a marker of recombinant CHFR protein expression. To

validate the positive correlation between EGFP expression and

CHFR expression, the percentage of EGFP positive cells that were

immunoreactive also for the anti-HA antibody was determined

microscopically (Fig 5B). Among the 200 EGFP-positive cells that

were counted, 182 (91%) showed positive staining for anti-HA

antibody (Fig. 5B), confirming the usefulness of EGFP as a marker.

As shown in Figure 5C, following nocodazole treatment, the

percentage of EGFP-positive mitotic cells was found to decrease in

conjunction with the expression of the wild type, DRF and DCys

CHFR proteins, compared with the vector control. In contrast, the

expression of the DFHA mutant did not affect the percentage of

mitotic cells. From these data, we conclude that the FHA domain

is essential for the mitotic checkpoint function of CHFR.

Discussion

Our current study has identified the CHFR domains that are

responsible for the anti-proliferative effects of this protein and the

results are summarized in Table 1. We find that both the anti-

proliferative effects and checkpoint function of CHFR require the

FHA domain, whereas the E3 ligase activity of this tumor

suppressor relies on the RF and Cys domains. This suggests that

there is a functional link between the anti-proliferative effects and

checkpoint function of CHFR. Our present analyses also reveal

that the FHA domain is the most important region of CHFR for

its anti-proliferative role, which is in good agreement with several

previous studies. Toyota et al have also reported that the

introduction of a wild-type CHFR expression vector causes the

growth suppression of the host cells, whereas a FHA deletion

mutant did not affect cell growth [19].

Although the data presented by Toyota et al was quite suggestive

of the essential role of FHA in cell growth control, it should be

noted that the cell lines they analyzed (SW480 and T98G)

endogenously express CHFR transcripts (see Fig. 1C for SW480)

[34]. The accurate and quantitative evaluation of the impact of the

DFHA mutant on cell growth is difficult to undertake in the

presence of endogenous protein because of the dominant-negative

properties of this mutant [1]. Interestingly, we detected that the

expression of these mutant CHFR proteins had a completely

different result upon the growth of HeLa cells, which express

r

however, between any of these transfected cells in terms of their morphology. (B) Colony formation assay of HCT116 cells after retroviral infection
with the same CHFR constructs as in (A). (C) Statistical evaluation of the colony formation assay results for HCT116, RKO and HeLa cells expressing the
indicated exogenous proteins. *p,0.01, **p,0.05. (D) Measurements of the recombinant retrovirus copy number in the supernatants of PT67
producer cells by real time PCR. (E) The detection of stably expressed wild-type, DFHA, a DRF and DCys CHFR protein in HCT116 and RKO cells
following infection with the corresponding recombinant retroviruses. Total cellular protein extracts were obtained at the fourth passage. The level of
introduced proteins in the cells that infected with empty vector (lane 1); wild-type CHFR (lane 2); DFHA (lane 3); DRF (lane 4); or DCys (lane 5).
doi:10.1371/journal.pone.0001776.g002

Figure 3. In vivo ubiquitination assay for the wild-type, DFHA, DRF and DCys forms of the CHFR protein. (Left panel) Measurement of the
transient expression levels of both the wild-type and mutant form of CHFR proteins in HCT116 cells by western blotting. The proteins were separated
by 10% SDS-PAGE. (Middle panel) Immunoprecipitation and immunoblotting of proteins with anti-HA antibodies. The proteins were resolved by 7.5%
SDS-PAGE. (Right panel) The detection of FLAG-reactive proteins following immunoprecipitation by HA antibodies. Ubiquitinated proteins are
evident by the presence of high molecular weight bands in lanes 2 and 3, but not in lanes 1, 4 and 5. Cells were cotransfected with FLAG tagged
ubiquitin expression (FLAG-Ubi) vector and either empty vector (lane 1); wild-type CHFR (lane 2); DFHA (lane 3); DRF (lane 4); or DCys (lane 5).
doi:10.1371/journal.pone.0001776.g003
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endogenous CHFR, compared with HCT116 and RKO cells

(Fig. 2C). In these experiments, the expression of DFHA induced a

significant increase in colony number whereas the wild-type, DRF

and DCys CHFR species did not show any effects (Fig. 2C, Right

panel). A previous study has indicated that the DFHA mutant of

CHFR acts as a dominant-negative and can disrupt the checkpoint

function of the wild type protein [1]. Hence, we speculated that

the increase in the colony number in HeLa cells by DFHA was

caused by the dominant-negative effects of this mutant upon the

endogenous wild type CHFR protein [1]. The reported existence

of a splicing variant form of CHFR that lacks the FHA domain

and acts in a dominant-negative manner further supports our

contention [19]. It has not yet been reported until this manuscript

to evaluate the effect of FHA domain against cell proliferation

under the two conditions, the existence and non-existence of

endogenous CHFR. We therefore conclude that our current study

is the first report that precisely identifies the functional domain

responsible for the anti-proliferative function of CHFR.

We show from our analysis that the loss of the RF domain and

its associated E3 ligase activity did not disrupt the anti-proliferative

effects of CHFR, suggesting that the E3 ligase activity of this

protein is not essential for its tumor suppressor function. From

previous functional analysis of CHFR knockout mice, however, Yu

et al concluded that the tumor suppressor function of CHFR is

conferred by its E3 ligase activity toward the Aurora A protein, a

predicted oncogenic kinase [21]. There is therefore some

disagreement regarding the precise role of the E3 ligase activity

of CHFR, but possible explanation can be considered. We need to

pay attention to the tissue specificity of CHFR to induce the

degradation of Aurora A. Elevated protein levels of Aurora A are

frequently observed in both human colon and mammary cancers

[25,26], but the inactivation of CHFR is limited to cases of colon

cancer [17,35]. High levels of Aurora A in mammary cancers

cannot therefore be explained by a loss of function of CHFR.

These findings indicate the existence of degradation pathways for

Aurora A that are independent of CHFR [17]. In this regard,

Cdh1 is a strong candidate as an alternative E3 ligase for Aurora A

[36,37]. The exogenous introduction of a dominant-negative form

of Cdh1 was reported to induce elevated levels of Aurora A

protein in HeLa cells [37]. Hence, there may be several molecular

pathways that promote the degradation of Aurora A but that are

tissue- or organ-specific. The protein levels of Aurora A did not

change after the expression of any form of CHFR in HCT116

colon cancer cells in our current experiments (data not shown).

The differences between the findings of this and other studies

might thus be due to the cell-type specificity of the degradation

pathways for Aurora A.

With regards to the E3 ligase activity of CHFR, we found that

the RF and Cys domains are essential. These results are consistent

with previously reported findings, which show that CHFR binds to

its substrates through its Cys domain, and forms a protein complex

with APC/C through its RF domain [21]. Some E3 ligases have

also been reported to have self-ubiquitination activity [38,39], but

we did not detect this in the case of CHFR. In contrast, Kang et al

have reported strong self-ubiquitination activity for CHFR [22].

One possibility to be taken into consideration when evaluating

these discrepancies is the difference of their GST protein tag and

our HA tag. The self ubiquitination activity affected by the protein

tag has reported with MBP protein tag in case of Rma1, EL5 and

Perkin [40–42]. Therefore, further experiments with other protein

tags would be needed to get the conclusion about the self

ubiquitination activity of CHFR protein.

The results of our current study also show that the expression of

CHFR arrests the cell cycle prior to entry into mitosis in the

presence of microtubule depolymerizing reagents, which is

consistent with previous reports [1,19,22,27,28]. A growth

advantage will be conferred upon cells which have lost the

checkpoint machinery that functions under mitotic stress condi-

tions. In agreement with this idea, shRNA knock down of CHFR

recently reported to induce the increased cell proliferation during

the preparation of this manuscript [43]. Since the promoter

methylation of the CHFR gene was detected in non-invasive

adenoma lesions of colon epithelia [44], the associated loss of

the checkpoint function of CHFR in these cells may have a

significant impact upon the early stages of colon carcinogenesis.

To gain further supportive evidence that the FHA domain of

CHFR is important for its growth inhibition properties, we

have recently put a considerable amount of effort into estab-

lishing a conditional expression system for this protein using

the Cre-loxP recombination system [30] to evaluate tumor

formation activity in vivo (e.g. nude mice). Unfortunately, we

have yet to establish an efficient conditional system due to the

toxicity of Cre-expressing adenovirus in HCT116 colon cancer

cells. Although it is not direct evidence, a remarkably high

protein level of the DFHA mutant, compared with that of the wild-

type and other mutant forms of CHFR, suggests that the FHA

domain has an important role in suppressing tumor formation

(Fig. 2E). The FHA domain is expected to work as the binding

motif for phosphorylated proteins. We are currently working on

the experiments to isolate the binding partner of FHA domain of

CHFR protein. There is a possibility that the detail of anti-

Figure 4. Intracellular localization of wild-type and mutant
forms of CHFR proteins detected by fluorescence immuno-
staining. The localization of the wild-type or mutant forms of the CHFR
protein was assessed by the immunoreactivity of an anti-HA antibody
(green signal). PML nuclear foci were detected with an anti-PML
antibody (red signal). The nuclei of HCT116 cells were counterstained
with Hoechst (blue). Merged pictures are shown to highlight the signal
overlap between the Hoechst and anti-HA staining.
doi:10.1371/journal.pone.0001776.g004
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proliferative effect can be explained with the binding of new

candidates and CHFR. These information will help us to gain

further insights in understanding how a functional loss of this

gene leads to increased cell proliferation during gastrointestinal

carcinogenesis.
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Figure 5. Checkpoint assay of the wild type and mutant forms of the CHFR protein. (A) Schematic representation of the bicistronic
vectors used to express the indicated CHFR products. (B) Validation of the positive correlation between the anti-HA antibody
immunoreactivity and EGFP expression profiles. Cells that were positive for both are denoted by arrows. Cells that were positive for the anti-HA
antibody, but not for EGFP, are highlighted by an asterisk. (C) Mitotic checkpoint analysis of HCT116 cells after the introduction of an empty vector,
wild-type-EGFP, DFHA-EGFP, DRF-EGFP or DCys-EGFP. Asterisks indicate statistical significance (p,0.05).
doi:10.1371/journal.pone.0001776.g005

Table 1. Summary of the functional properties of wild-type,
DFHA, DRF and DCys CHFR proteins.

Wild type
CHFR DFHA DRF DCys

Anti-proliferative
effects

Yes No Yes Yes

E3 ligase activity Yes Yes No No

Cellular
localization

Nucleus Nucleus Nucleus Nucleus

Checkpoint
function

Yes No Yes Yes

doi:10.1371/journal.pone.0001776.t001
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