370 research outputs found

    Use of argatroban in combination with nafamostat mesilate in open-heart surgery for a pediatric patient with heparin-induced thrombocytopenia type II: a case report

    Get PDF
    [Background]Heparin-induced thrombocytopenia type II (HIT II) is a rare, immune-mediated complication of heparin therapy and can cause life-threatening thromboembolism. However, perioperative anticoagulation therapy for patients with a complication of HIT II has not been established. [Case presentation]A 6-year-old boy with tetralogy of Fallot underwent radical intracardiac repair with administration of argatroban at 1 year old due to positive HIT antibody. Reoperation was scheduled for pulmonary valve insufficiency, using argatroban and nafamostat mesilate as anticoagulants. Argatroban has a long onset time and the activated coagulation time (ACT) requires 7–26 h to return to the preadministration level, making hemorrhage control difficult, while half-life of nafamostat mesilate is shorter than that of argatroban. Celite ACT reflects the effects of both argatroban and nafamostat mesilate, but kaolin ACT reflects only the effect of argatroban. Due to the early termination of argatroban administration based on Celite and kaolin ACTs, ACT recovered to ≤ 200 s at 5 h after the end of argatroban administration. [Conclusion]Celite and kaolin ACTs can be used as markers to obtain close control of the required dose of argatroban in combination with nafamostat mesilate for the management of HIT II patients

    Rocuronium has a suppressive effect on platelet function via the p2y12 receptor pathway in vitro that is not reversed by sugammadex

    Get PDF
    Rocuronium is an aminosteroid nondepolarizing neuromuscular blocker that is widely used for anesthesia and intensive care. In this study, we investigated the effect of rocuronium on human platelet functions in vitro. The effects of rocuronium on platelet aggregation, P-selectin expression, and cyclic adenosine monophosphate (cAMP) levels in platelets were measured using an aggregometer, an enzyme immunoassay, and flow cytometry, respectively. Rocuronium inhibited ADP-induced platelet aggregation, P-selectin expression and suppression of cAMP production. These effects were not antagonized by equimolar sugammadex, a synthetic γ-cyclodextrin derivative that antagonizes rocuronium-induced muscle relaxation by encapsulating the rocuronium molecule. Morpholine, which constitutes a part of the rocuronium molecule but is not encapsulated by sugammadex, inhibited ADP-induced platelet aggregation. Vecuronium, which has a molecular structure similar to that of rocuronium but does not possess a morpholine ring, had no significant effect on ADP-induced platelet aggregation. These results indicate that rocuronium has a suppressive effect on platelet functions in vitro that is not reversed by sugammadex and suggest that this effect is mediated by blockade of the P2Y12 receptor signaling pathway via the morpholine ring of rocuronium

    Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation

    Get PDF
    BACKGROUND: Intracranial aneurysm (IA) is a socially important disease due to its high incidence in the general public and the severity of resultant subarachnoid hemorrhage that follows rupture. Despite the social importance of IA as a cause of subarachnoid hemorrhage, there is no medical treatment to prevent rupture, except for surgical procedures, because the mechanisms regulating IA formation are poorly understood. Therefore, these mechanisms should be elucidated to identify a therapeutic target for IA treatment. In human IAs, the presence of inflammatory responses, such as an increase of tumor necrosis factor (TNF)-alpha, have been observed, suggesting a role for inflammation in IA formation. Recent investigations using rodent models of IAs have revealed the crucial role of inflammatory responses in IA formation, supporting the results of human studies. Thus, we identified nuclear factor (NF)-kappaB as a critical mediator of inflammation regulating IA formation, by inducing downstream pro-inflammatory genes such as MCP-1, a chemoattractant for macrophages, and COX-2. In this study, we focused on TNF-alpha signaling as a potential cascade that regulates NF-kappaB-mediated IA formation. RESULTS: We first confirmed an increase in TNF-alpha content in IA walls during IA formation, as expected based on human studies. Consistently, the activity of TNF-alpha converting enzyme (TACE), an enzyme responsible for TNF-alpha release, was induced in the arterial walls after aneurysm induction in a rat model. Next, we subjected tumor necrosis factor receptor superfamily member 1a (TNFR1)-deficient mice to the IA model to clarify the contribution of TNF-alpha-TNFR1 signaling to pathogenesis, and confirmed significant suppression of IA formation in TNFR1-deficient mice. Furthermore, in the IA walls of TNFR1-deficient mice, inflammatory responses, including NF-kappaB activation, subsequent expression of MCP-1 and COX-2, and infiltration of macrophages into the IA lesion, were greatly suppressed compared with those in wild-type mice. CONCLUSIONS: In this study, using rodent models of IAs, we clarified the crucial role of TNF-alpha-TNFR1 signaling in the pathogenesis of IAs by inducing inflammatory responses, and propose this signaling as a potential therapeutic target for IA treatment

    A case of left ventricular free wall rupture after insertion of an IMPELLA® left ventricular assist device diagnosed by transesophageal echocardiography

    Get PDF
    [Background]The IMPELLA® is a minimally invasive left ventricular assist device. We report a case in which transesophageal echocardiography (TEE) was useful in diagnosis of left ventricular rupture after IMPELLA® insertion. [Case presentation]A 75-year-old man presented to the emergency room with chest pain and underwent percutaneous coronary intervention for 100% stenosis of the left anterior descending branch #7. An IMPELLA® was inserted to stabilize the circulation, but hypotension persisted. Transthoracic echocardiography revealed increased pericardial effusion and suspicion of free wall left ventricular rupture, leading to emergency surgery. TEE revealed the IMPELLA® straying into the left ventricle apical wall and cardiac tamponade. Hemorrhage was observed from the thinning free wall and the tip of the IMPELLA® was palpable. The IMPELLA® was removed and the left ventricular wall was repaired. [Conclusions]The IMPELLA® requires implantation of the tip in the left ventricle, but it should be noted that a fragile ventricular wall can be easily perforated

    First determination of Pu isotopes (239Pu, 240Pu and 241Pu) in radioactive particles derived from Fukushima Daiichi Nuclear Power Plant accident

    Get PDF
    Radioactive particles were released into the environment during the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Many studies have been conducted to elucidate the chemical composition of released radioactive particles in order to understand their formation process. However, whether radioactive particles contain nuclear fuel radionuclides remains to be investigated. Here, we report the first determination of Pu isotopes in radioactive particles. To determine the Pu isotopes (239Pu, 240Pu and 241Pu) in radioactive particles derived from the FDNPP accident which were free from the influence of global fallout, radiochemical analysis and inductively coupled plasma-mass spectrometry measurements were conducted. Radioactive particles derived from unit 1 and unit 2 or 3 were analyzed. For the radioactive particles derived from unit 1, activities of 239+240Pu and 241Pu were (1.70-7.06)×10-5 Bq and (4.10-8.10)×10-3 Bq, respectively and atom ratios of 240Pu/239Pu and 241Pu/239Pu were 0.330-0.415 and 0.162-0.178, respectively. These ratios were consistent with the simulation results from ORIGEN code and measurements from various environmental samples. In contrast, Pu was not detected in the radioactive particles derived from unit 2 or 3. The difference in Pu contents is clear evidence towards different formation processes of radioactive particles, and detailed formation processes can be investigated from Pu analysis
    corecore