9 research outputs found

    Combined use of CSF NfL and CSF TDP-43 improves diagnostic performance in ALS:A comprehensive analysis on diagnostic and prognostic significance of plasma and CSF NfL, TDP-43, and tau

    Get PDF
    Objective To determine the diagnostic and prognostic significance of neurofilament light chain (NfL), TAR DNA-binding protein 43 (TDP-43), and total tau (t-tau) in cerebrospinal fluid (CSF) and plasma of patients with amyotrophic lateral sclerosis (ALS) and to investigate whether the combined use of those biomarker candidates can improve their diagnostic performance. Methods This was a single-center, prospective, longitudinal study. CSF and plasma samples were collected at the time of enrollment from a discovery cohort of 29 patients with ALS and 29 age-matched controls without neurodegenerative disease. In a validation cohort, there were 46 patients with ALS, and 46 control (not age-matched) patients with motor weakness resulting from neuromuscular diseases. NfL, TDP-43, and t-tau levels in CSF and plasma were measured using ultrasensitive single molecule assay (Simoa) technology. Results The following findings were reproducibly observed among the discovery and validation cohorts: increased levels of CSF NfL, plasma NfL, and CSF TDP-43 in ALS compared with control groups; shorter survival associated with higher levels of CSF and plasma NfL. When the CSF NfL and CSF TDP-43 levels were combined, the areas under the ROC curves (AUC) were slightly improved relative to AUCs for each biomarker alone. Interpretation CSF and plasma NfL may not only serve as diagnostic biomarkers but also provide a measure of disease progression. CSF TDP-43 is also useful as a diagnostic biomarker of ALS, but has no prognostic value. The combined use of CSF NfL and CSF TDP-43 may be a useful biomarker for the diagnosis of ALS

    Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease

    No full text
    Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism

    Serum leucine-rich α2 glycoprotein as a potential biomarker for systemic inflammation in Parkinson's disease.

    No full text
    There is ample epidemiological and animal-model evidence suggesting that intestinal inflammation is associated with the development of Parkinson's disease (PD). Leucine-rich α2 glycoprotein (LRG) is a serum inflammatory biomarker used to monitor the activity of autoimmune diseases, including inflammatory bowel diseases. In this study, we aimed to investigate whether serum LRG could be used a biomarker of systemic inflammation in PD and to help distinguish disease states. Serum LRG and C-reactive protein (CRP) levels were measured in 66 patients with PD and 31 age-matched controls. We found that serum LRG levels were statistically significantly higher in the PD group than in the control group (PD: 13.9 ± 4.2 ng/mL, control: 12.1 ± 2.7 ng/mL, p = 0.036). LRG levels were also correlated with Charlson comorbidity index (CCI) and CRP levels. LRG levels in the PD group were correlated with Hoehn and Yahr stages (Spearman's r = 0.40, p = 0.008). LRG levels were statistically significantly elevated in PD patients with dementia as compared to those without dementia (p = 0.0078). Multivariate analysis revealed a statistically significant correlation between PD and serum LRG levels after adjusting for serum CRP levels, and CCI (p = 0.019). We conclude that serum LRG levels could be considered a potential biomarker for systemic inflammation in PD

    Serum leucine-rich α2 glycoprotein as a potential biomarker for systemic inflammation in Parkinson’s disease

    No full text
    There is ample epidemiological and animal-model evidence suggesting that intestinal inflammation is associated with the development of Parkinson’s disease (PD). Leucine-rich α2 glycoprotein (LRG) is a serum inflammatory biomarker used to monitor the activity of autoimmune diseases, including inflammatory bowel diseases. In this study, we aimed to investigate whether serum LRG could be used a biomarker of systemic inflammation in PD and to help distinguish disease states. Serum LRG and C-reactive protein (CRP) levels were measured in 66 patients with PD and 31 age-matched controls. We found that serum LRG levels were statistically significantly higher in the PD group than in the control group (PD: 13.9 ± 4.2 ng/mL, control: 12.1 ± 2.7 ng/mL, p = 0.036). LRG levels were also correlated with Charlson comorbidity index (CCI) and CRP levels. LRG levels in the PD group were correlated with Hoehn and Yahr stages (Spearman’s r = 0.40, p = 0.008). LRG levels were statistically significantly elevated in PD patients with dementia as compared to those without dementia (p = 0.0078). Multivariate analysis revealed a statistically significant correlation between PD and serum LRG levels after adjusting for serum CRP levels, and CCI (p = 0.019). We conclude that serum LRG levels could be considered a potential biomarker for systemic inflammation in PD

    Risk factors for neuropsychiatric symptoms in patients with Parkinson's disease during COVID-19 pandemic in Japan.

    No full text
    The worsening of neuropsychiatric symptoms such as depression, anxiety, and insomnia in patients with Parkinson's disease (PD) has been a concern during the COVID-19 pandemic, because most people worked in self-isolation for fear of infection. We aimed to clarify the impact of social restrictions imposed due to the COVID-19 pandemic on neuropsychiatric symptoms in PD patients and to identify risk factors associated with these symptoms. A cross-sectional, hospital-based survey was conducted from April 22, 2020 to May 15, 2020. PD patients and their family members were asked to complete paper-based questionnaires about neuropsychiatric symptoms by mail. PD patients were evaluated for motor symptoms using MDS-UPDRS part 2 by telephone interview. A total of 71 responders (39 PD patients and 32 controls) completed the study. Although there was no difference in the age distribution, the rate of females was significantly lower in PD patients (35%) than controls (84%) (P < 0.001). Participants with clinical depression (PHQ-9 score ≥ 10) were more common in PD patients (39%) than controls (6%) (P = 0.002). Multivariate logistic regression analysis revealed that an MDS-UPDRS part 2 score was correlated with the presence of clinical depression (PHQ-9 score ≥ 10) and clinical anxiety (GAD-7 score ≥ 7) (clinical depression: OR, 1.31; 95% CI, 1.04-1.66; P = 0.025; clinical anxiety: OR, 1.36; 95% CI, 1.07-1.72; P = 0.013). In the presence of social restrictions, more attention needs to be paid to the neuropsychiatric complications of PD patients, especially those with more severe motor symptoms

    Quantification of Blood Caffeine Levels in Patients With Parkinson\u27s Disease and Multiple System Atrophy by Caffeine ELISA

    No full text
    Caffeine is considered to be a neuroprotective agent against Parkinson’s disease (PD)and is expected to offer a blood-based biomarker for the disease.We herein investigatedthe ability of this biomarker to discriminate between PD and neurodegenerative diseases.To quantify caffeine concentrations in serum and plasma, we developed a specificcompetitive enzyme-linked immunosorbent assay (ELISA). To validate the diagnosticperformance of the assay, we conducted a case control-study of two independentcohorts among controls and patients with PD and multiple system atrophy (MSA).Parallelism, recovery rate, and intra- and inter-assay precision of our assay were withinthe standard of acceptance. In the first cohort of 31 PD patients, 18 MSA patients and 33age-matched controls, serum caffeine levels were significantly lower in PD patients thanin Controls (p = 0.018). A similar trend was also observed in the MSA group, but did notreach the level of significance. In the second cohort of 50 PD patients, 50 MSA patientsand 45 age-matched controls, plasma caffeine levels were significantly decreased inboth PD and MSA groups compared to Controls (p < 0.001). This originally developedELISA offered sufficient sensitivity to detect caffeine in human serum and plasma. Wereproducibly confirmed decreased blood concentrations of caffeine in PD compared tocontrols using this ELISA. A similar trend was observed in the MSA group, despite a lackof consistent significant differences across cohorts
    corecore