881 research outputs found

    The GL_2 main conjecture for elliptic curves without complex multiplication

    Get PDF
    The main conjectures of Iwasawa theory provide the only general method known at present for studying the mysterious relationship between purely arithmetic problems and the special values of complex L-functions, typified by the conjecture of Birch and Swinnerton-Dyer and its generalizations. Our goal in the present paper is to develop algebraic techniques which enable us to formulate a precise version of such a main conjecture for motives over a large class of p-adic Lie extensions of number fields. The paper ends by formulating and briefly discussing the main conjecture for an elliptic curve E over the rationals Q over the field generated by the coordinates of its p-power division points, where p is a prime greater than 3 of good ordinary reduction for E.Comment: 39 page

    Overlap/Domain-wall reweighting

    Full text link
    We investigate the eigenvalues of nearly chiral lattice Dirac operators constructed with five-dimensional implementations. Allowing small violation of the Ginsparg-Wilson relation, the HMC simulation is made much faster while the eigenvalues are not significantly affected. We discuss the possibility of reweighting the gauge configurations generated with domain-wall fermions to those of exactly chiral lattice fermions.Comment: 7 pages, 3 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July-3 August 2013, Mainz, German

    Lattice study of meson correlators in the epsilon-regime of two-flavor QCD

    Full text link
    We calculate mesonic two-point functions in the epsilon-regime of two-flavor QCD on the lattice with exact chiral symmetry. We use gauge configurations of size 16^3 32 at the lattice spacing a \sim 0.11 fm generated with dynamical overlap fermions. The sea quark mass is fixed at \sim 3 MeV and the valence quark mass is varied in the range 1-4 MeV, both of which are in the epsilon-regime. We find a good consistency with the expectations from the next-to-leading order calculation in the epsilon-expansion of (partially quenched) chiral perturbation theory. From a fit we obtain the pion decay constant F=87.3(5.6) MeV and the chiral condensate Sigma^{MS}=[239.8(4.0) MeV ]^3 up to next-to-next-to-leading order contributions.Comment: 20 pages, 12 figures, final version to appear in PR

    B_K with two flavors of dynamical overlap fermions

    Get PDF
    We present a two-flavor QCD calculation of BKB_K on a 163×3216^3 \times 32 lattice at a∼0.12a\sim 0.12 fm (or equivalently a−1∼a^{-1}\sim1.67 GeV). Both valence and sea quarks are described by the overlap fermion formulation. The matching factor is calculated non-perturbatively with the so-called RI/MOM scheme. We find that the lattice data are well described by the next-to-leading order (NLO) partially quenched chiral perturbation theory (PQChPT) up to around a half of the strange quark mass (msphys/2m_s^{\rm phys}/2). The data at quark masses heavier than msphys/2m_s^{\rm phys}/2 are fitted including a part of next-to-next-to-leading order terms. We obtain BKMSˉ(2GeV)=0.537(4)(40)B_K^{\bar{\rm MS}}(2 {\rm GeV})= 0.537(4)(40), where the first error is statistical and the second is an estimate of systematic uncertainties from finite volume, fixing topology, the matching factor, and the scale setting.Comment: 36 pages, 14 figures, comments and references added, analysis and systematic error revised, minor change in the final result. version to appear in PRD, reference correcte

    Determination of the chiral condensate from 2+1-flavor lattice QCD

    Get PDF
    We perform a precise calculation of the chiral condensate in QCD using lattice QCD with 2+1 flavors of dynamical overlap quarks. Up and down quark masses cover a range between 3 and 100 MeV on a 16^3x48 lattice at a lattice spacing around 0.11 fm. At the lightest sea quark mass, the finite volume system on the lattice is in the epsilon-regime. By matching the low-lying eigenvalue spectrum of the Dirac operator with the prediction of chiral perturbation theory at the next-to-leading order, we determine the chiral condensate in 2+1-flavor QCD with strange quark mass fixed at its physical value as Sigma (MS-bar at 2 GeV) = [242(04)(^+19_-18}) MeV}]^3, where the errors are statistical and systematic, respectively.Comment: 4 pages, 3 figures, errors in table 1 and fig.3 corrected. Published in PR
    • …
    corecore