22 research outputs found

    Pivotal Role of IL-22 Binding Protein in the Epithelial Autoregulation of Interleukin-22 Signaling in the Control of Skin Inflammation

    Get PDF
    Disruption of skin homeostasis can lead to inflammatory cutaneous diseases resulting from the dysregulated interplay between epithelial keratinocytes and immune cells. Interleukin (IL)-22 signaling through membrane-bound IL-22 receptor 1 (IL-22R1) is crucial to maintain cutaneous epithelial integrity, and its malfunction mediates deleterious skin inflammation. While IL-22 binding protein (IL-22BP) binds IL-22 to suppress IL-22 signaling, how IL-22BP controls epithelial functionality to prevent skin inflammation remains unclear. Here, we describe the pivotal role of IL-22BP in mediating epithelial autoregulation of IL-22 signaling for the control of cutaneous pathogenesis. Unlike prominent expression of IL-22BP in dendritic cells in lymphoid tissues, epidermal keratinocytes predominantly expressed IL-22BP in the skin in the steady state, whereas its expression decreased during the development of psoriatic inflammation. Deficiency in IL-22BP aggravates psoriasiform dermatitis, accompanied by abnormal hyperproliferation of keratinocytes and excessive cutaneous inflammation as well as enhanced dermal infiltration of granulocytes and γδT cells. Furthermore, IL-22BP abrogates the functional alternations of keratinocytes upon stimulation with IL-22. On the other hand, treatment with IL-22BP alleviates the severity of cutaneous pathology and inflammation in psoriatic mice. Thus, the fine-tuning of IL-22 signaling through autocrine IL-22BP production in keratinocytes is instrumental in the maintenance of skin homeostasis

    Gut dysbiosis promotes the breakdown of oral tolerance mediated through dysfunction of mucosal dendritic cells

    No full text
    Summary: While dysbiosis in the gut is implicated in the impaired induction of oral tolerance generated in mesenteric lymph nodes (MesLNs), how dysbiosis affects this process remains unclear. Here, we describe that antibiotic-driven gut dysbiosis causes the dysfunction of CD11c+CD103+ conventional dendritic cells (cDCs) in MesLNs, preventing the establishment of oral tolerance. Deficiency of CD11c+CD103+ cDCs abrogates the generation of regulatory T cells in MesLNs to establish oral tolerance. Antibiotic treatment triggers the intestinal dysbiosis linked to the impaired generation of colony-stimulating factor 2 (Csf2)-producing group 3 innate lymphoid cells (ILC3s) for regulating the tolerogenesis of CD11c+CD103+ cDCs and the reduced expression of tumor necrosis factor (TNF)-like ligand 1A (TL1A) on CD11c+CD103+ cDCs for generating Csf2-producing ILC3s. Thus, antibiotic-driven intestinal dysbiosis leads to the breakdown of crosstalk between CD11c+CD103+ cDCs and ILC3s for maintaining the tolerogenesis of CD11c+CD103+ cDCs in MesLNs, responsible for the failed establishment of oral tolerance

    Spatiotemporal expression of HMGB2 regulates cell proliferation and hepatocyte size during liver regeneration

    No full text
    Abstract Liver regeneration is an extraordinarily complex process involving a variety of factors; however, the role of chromatin protein in hepatocyte proliferation is largely unknown. In this study, we investigated the functional role of high-mobility group box 2 (HMGB2), a chromatin protein in liver regeneration using wild-type and HMGB2-knockout (KO) mice. Liver tissues were sampled after 70% partial hepatectomy (PHx), and analyzed by immunohistochemistry, western blotting and flow cytometry using various markers of cell proliferation. In WT mice, hepatocyte proliferation was strongly correlated with the spatiotemporal expression of HMGB2; however, cell proliferation was significantly delayed in hepatocytes of HMGB2-KO mice. Quantitative PCR demonstrated that cyclin D1 and cyclin B1 mRNAs were significantly decreased in HMGB2-KO mice livers. Interestingly, hepatocyte size was significantly larger in HMGB2-KO mice at 36–72 h after PHx, and these results suggest that hepatocyte hypertrophy appeared in parallel with delayed cell proliferation. In vitro experiments demonstrated that cell proliferation was significantly decreased in HMGB2-KO cells. A significant delay in cell proliferation was also found in HMGB2-siRNA transfected cells. In summary, spatiotemporal expression of HMGB2 is important for regulation of hepatocyte proliferation and cell size during liver regeneration

    CONGENITAL DEFICIENCY OF CONVENTIONAL DENDRITIC CELLS PROMOTES THE DEVELOPMENT OF ATOPIC DERMATITIS-LIKE INFLAMMATION

    No full text
    Atopic dermatitis (AD) is a common pruritic inflammatory skin disease characterized by impaired epidermal barrier function and dysregulation of Thelper-2 (TH2)-biased immune responses. While the lineage of conventional dendritic cells (cDCs) are implicated to play decisive roles in T-cell immune responses, their requirement for the development of AD remains elusive. Here, we describe the impact of the constitutive loss of cDCs on the progression of AD-like inflammation by using binary transgenic (Tg) mice that constitutively lacked CD11chi cDCs. Unexpectedly, the congenital deficiency of cDCs not only exacerbates the pathogenesis of AD-like inflammation but also elicits immune abnormalities with the increased composition and function of granulocytes and group 2 innate lymphoid cells (ILC2) as well as B cells possibly mediated through the breakdown of the Fms-related tyrosine kinase 3 ligand (Flt3L)-mediated homeostatic feedback loop. Furthermore, the constitutive loss of cDCs accelerates skin colonization of Staphylococcus aureus (S. aureus), that associated with disease flare. Thus, cDCs maintains immune homeostasis to prevent the occurrence of immune abnormalities to maintain the functional skin barrier for mitigating AD flare

    Pivotal role of CD103 in the development of psoriasiform dermatitis

    No full text
    The integrin αE known as CD103 binds integrin β7 to form the complete heterodimeric integrin molecule αEβ7. CD103 is mainly expressed by lymphocytes within epithelial tissues of intestine, lung, and skin as well as subsets of mucosal and dermal conventional dendritic cells (cDCs). CD103 has been originally implicated in the attachment of lymphocytes to epithelium in the gut and skin through the interaction with E-cadherin expressed on intestinal epithelial cells, keratinocytes, and Langerhans cells (LCs). However, an impact of CD103 on the cutaneous immune responses and the development of inflammatory skin diseases remains elusive. Here, we report that CD103 regulates the development of psoriasiform dermatitis through the control of the function of cDCs. Deficiency in CD103 exacerbates psoriasiform dermatitis, accompanied by excessive epidermal hyperplasia and infiltration of inflammatory leukocytes. Furthermore, deficiency in CD103 not only accelerates the production of proinflammatory cytokines in psoriatic lesions but also promotes the generation of lymphocytes producing interleukin (IL)-17 in the skin-draining peripheral lymph nodes (PLNs). Under the deficiency in CD103, cDCs localized in PLNs enhance cytokine production following activation. Thus, our findings reveal a pivotal role for CD103 in the control of the function of cDCs to regulate cutaneous inflammation in psoriasiform dermatitis.Citation: Fukui T, Fukaya T, Uto T, Takagi H, Nasu J, Miyanaga N, Nishikawa Y, Koseki H, Choijookhuu N, Hishikawa Y, Yamashita Y, Sato K. Pivotal role of CD103 in the development of psoriasiform dermatitis. Sci Rep. 2020 May 20;10(1):8371. doi: 10.1038/s41598-020-65355-9. Erratum in: Sci Rep. 2020 Sep 29;10(1):16375. PMID: 32433498; PMCID: PMC7239860

    Presentation_1_Pivotal Role of IL-22 Binding Protein in the Epithelial Autoregulation of Interleukin-22 Signaling in the Control of Skin Inflammation.PDF

    No full text
    <p>Disruption of skin homeostasis can lead to inflammatory cutaneous diseases resulting from the dysregulated interplay between epithelial keratinocytes and immune cells. Interleukin (IL)-22 signaling through membrane-bound IL-22 receptor 1 (IL-22R1) is crucial to maintain cutaneous epithelial integrity, and its malfunction mediates deleterious skin inflammation. While IL-22 binding protein (IL-22BP) binds IL-22 to suppress IL-22 signaling, how IL-22BP controls epithelial functionality to prevent skin inflammation remains unclear. Here, we describe the pivotal role of IL-22BP in mediating epithelial autoregulation of IL-22 signaling for the control of cutaneous pathogenesis. Unlike prominent expression of IL-22BP in dendritic cells in lymphoid tissues, epidermal keratinocytes predominantly expressed IL-22BP in the skin in the steady state, whereas its expression decreased during the development of psoriatic inflammation. Deficiency in IL-22BP aggravates psoriasiform dermatitis, accompanied by abnormal hyperproliferation of keratinocytes and excessive cutaneous inflammation as well as enhanced dermal infiltration of granulocytes and γδT cells. Furthermore, IL-22BP abrogates the functional alternations of keratinocytes upon stimulation with IL-22. On the other hand, treatment with IL-22BP alleviates the severity of cutaneous pathology and inflammation in psoriatic mice. Thus, the fine-tuning of IL-22 signaling through autocrine IL-22BP production in keratinocytes is instrumental in the maintenance of skin homeostasis.</p
    corecore