135 research outputs found
Molecular Bases and Phenotypic Determinants of Aromatase Excess Syndrome
Aromatase excess syndrome (AEXS) is a rare autosomal dominant disorder characterized by gynecomastia. This condition is caused by overexpression of CYP19A1 encoding aromatase, and three types of cryptic genomic rearrangement around CYP19A1, that is, duplications, deletions, and inversions, have been identified in AEXS. Duplications appear to have caused CYP19A1 overexpression because of an increased number of physiological promoters, whereas deletions and inversions would have induced wide CYP19A1 expression due to the formation of chimeric genes consisting of a noncoding exon(s) of a neighboring gene and CYP19A1 coding exons. Genotype-phenotype analysis implies that phenotypic severity of AEXS is primarily determined by the expression pattern of CYP19A1 and the chimeric genes and by the structural property of the fused exons with a promoter function (i.e., the presence or the absence of a natural translation start codon). These results provide novel information about molecular mechanisms of human genetic disorders and biological function of estrogens
Exploration of hydroxymethylation in Kagami-Ogata syndrome caused by hypermethylation of imprinting control regions
Primer sequences utilized in BS/oxBS pyrosequencing and cloning-based sequencing. (XLSX 9.68 kb
Long-read next-generation sequencing for molecular diagnosis of pediatric endocrine disorders
Recent advances in long-read next-generation sequencing (NGS) have enabled researchers to identify several pathogenic variants overlooked by short-read NGS, array-based comparative genomic hybridization, and other conventional methods. Long-read NGS is particularly useful in the detection of structural variants and repeat expansions. Furthermore, it can be used for mutation screening in difficult-to-sequence regions, as well as for DNA-methylation analyses and haplotype phasing. This mini-review introduces the usefulness of long-read NGS in the molecular diagnosis of pediatric endocrine disorders
Mamld1 Knockdown Reduces Testosterone Production and Cyp17a1 Expression in Mouse Leydig Tumor Cells
MAMLD1 is known to be a causative gene for hypospadias. Although previous studies have indicated that MAMLD1 mutations result in hypospadias primarily because of compromised testosterone production around the critical period for fetal sex development, the underlying mechanism(s) remains to be clarified. Furthermore, although functional studies have indicated a transactivation function of MAMLD1 for the non-canonical Notch target Hes3, its relevance to testosterone production remains unknown. To examine these matters, we performed Mamld1 knockdown experiments.Mamld1 knockdown was performed with two siRNAs, using mouse Leydig tumor cells (MLTCs). Mamld1 knockdown did not influence the concentrations of pregnenolone and progesterone but significantly reduced those of 17-OH pregnenolone, 17-OH progesterone, dehydroepiandrosterone, androstenedione, and testosterone in the culture media. Furthermore, Mamld1 knockdown significantly decreased Cyp17a1 expression, but did not affect expressions of other genes involved in testosterone biosynthesis as well as in insulin-like 3 production. Hes3 expression was not significantly altered. In addition, while 47 genes were significantly up-regulated (fold change >2.0×) and 38 genes were significantly down-regulated (fold change <0.5×), none of them was known to be involved in testosterone production. Cell proliferation analysis revealed no evidence for compromised proliferation of siRNA-transfected MLTCs.The results, in conjunction with the previous data, imply that Mamld1 enhances Cyp17a1 expression primarily in Leydig cells and permit to produce a sufficient amount of testosterone for male sex development, independently of the Hes3-related non-canonical Notch signaling
Parthenogenetic mosaicism: generation via second polar body retention and unmasking of a likely causative PER2 variant for hypersomnia
Background Parthenogenetic mosaicism is an extremely rare condition identified only in five subjects to date. The previous studies indicate that this condition is mediated by parthenogenetic activation and is free from a specific phenotype ascribed to unmaking of a maternally inherited recessive variant in the parthenogenetic cell lineage. Results We examined a 28-year-old Japanese 46,XX female with Silver-Russell syndrome and idiopathic hypersomnia. The results revealed (1) predominance of maternally derived alleles for all the differentially methylated regions examined; (2) no disease-related copy-number variant; (3) two types of regions for all chromosomes, i.e., four BAF (B-allele frequency) band regions with single major microsatellite peaks of maternal origin and single minor microsatellite peaks of non-maternal (paternal) origin, and six BAF band regions with single major microsatellite peaks of maternal origin and two minor microsatellite peaks of maternal and non-maternal (paternal) origin; (4) an unmasked extremely rare PER2 variant (c.1403G>A:p.(Arg468Gln)) with high predicted pathogenicity; (5) mildly affected local structure with altered hydrogen bonds of the p.Arg468Gln-PER2 protein; and (6) nucleus-dominant subcellular distribution of the p.Arg468Gln-PER2 protein. Conclusions The above findings imply that the second polar body retention occurred around fertilization, resulting in the generation of the parthenogenetic cell lineage by endoreplication of a female pronucleus and the normal cell lineage by fusion of male and female pronuclei, and that the homozygous PER2 variant in the parthenogenetic cells is the likely causative factor for idiopathic hypersomnia
LDL-C/HDL-C Ratio Predicts Carotid Intima-Media Thickness Progression Better Than HDL-C or LDL-C Alone
High-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) are strong predictors of atherosclerosis. Statin-induced changes in the ratio of LDL-C to HDL-C (LDL-C/HDL-C) predicted atherosclerosis progression better than LDL-C or HDL-C alone. However, the best predictor of subclinical atherosclerosis remains unknown. Our objective was to investigate this issue by measuring changes in carotid intima-media thickness (IMT). A total of 1,920 subjects received health examinations in 1999, and were followed up in 2007. Changes in IMT (follow-up IMT/baseline IMT × 100) were measured by ultrasonography. Our results showed that changes in IMT after eight years were significantly related to HDL-C (inversely, P < 0.05) and to LDL-C/HDL-C ratio (P < 0.05). When the LDL-C/HDL-C ratios were divided into quartiles, analysis of covariance showed that increases in the ratio were related to IMT progression (P < 0.05). This prospective study demonstrated the LDL-C/HDL-C ratio is a better predictor of IMT progression than HDL-C or LDL-C alone
Planetary period magnetic field oscillations in Saturn's magnetosphere: Postequinox abrupt nonmonotonic transitions to northern system dominance
[1] We examine the “planetary period” magnetic field oscillations observed in the “core” region of Saturn's magnetosphere (dipole L ≤ 12), on 56 near‐equatorial Cassini periapsis passes that took place between vernal equinox in August 2009 and November 2012. Previous studies have shown that these consist of the sum of two oscillations related to the northern and southern polar regions having differing amplitudes and periods that had reached near‐equal amplitudes and near‐converged periods ~10.68 h in the interval to ~1 year after equinox. The present analysis shows that an interval of strongly differing behavior then began ~1.5 years after equinox, in which abrupt changes in properties took place at ~6‐ to 8‐month intervals, with three clear transitions occurring in February 2011, August 2011, and April 2012, respectively. These are characterized by large simultaneous changes in the amplitudes of the two systems, together with small changes in period about otherwise near‐constant values of ~10.63 h for the northern system and ~10.69 h for the southern (thus, not reversed postequinox) and on occasion jumps in phase. The first transition produced a resumption of strong southern system dominance unexpected under northern spring conditions, while the second introduced comparably strong northern system dominance for the first time in these data. The third resulted in suppression of all core oscillations followed by re‐emergence of both systems on a time scale of ~85 days, with the northern system remaining dominant but not as strongly as before. This behavior poses interesting questions for presently proposed theoretical scenarios
Screening of MAMLD1 Mutations in 70 Children with 46,XY DSD: Identification and Functional Analysis of Two New Mutations
More than 50% of children with severe 46,XY disorders of sex development (DSD) do not have a definitive etiological diagnosis. Besides gonadal dysgenesis, defects in androgen biosynthesis, and abnormalities in androgen sensitivity, the Mastermind-like domain containing 1 (MAMLD1) gene, which was identified as critical for the development of male genitalia, may be implicated. The present study investigated whether MAMLD1 is implicated in cases of severe 46,XY DSD and whether routine sequencing of MAMLD1 should be performed in these patients
- …