407 research outputs found

    EPR and DRIFT spectroscopic characterization of humic fractions during composting of sawdust and paper mill sludge.

    Get PDF
    The spectroscopic characteristics (DRIFT, UV-visible and EPR) of humic fractions were studied during composting of sawdust and paper mill sludge. Infrared spectroscopy reveals a compost rich in hydroxyl and alkyl groups and carboxylates and carbohydrates. The alkyl fraction is abundant in the humic acids and humin. The decreasing of the E4/E6 ratio during composting indicates an enhancement of the organic chains number, with conjugated double bonds. This decreasing would correspond to a reduction of the lignin content and/or formation of porphyrins. The EPR shows that humin presents the highest concentration of free radical and the lowest intensities of the Fe3+

    Vanishing of the negative-sign problem of quantum Monte Carlo simulations in one-dimensional frustrated spin systems

    Full text link
    The negative-sign problem in one-dimensional frustrated quantum spin systems is solved. We can remove negative signs of the local Boltzmann weights by using a dimer basis that has the spin-reversal symmetry. Validity of this new basis is checked in a general frustrated double-spin-chain system, namely the J_0-J_1-J_2-J_3 model. The negative sign vanishes perfectly for J0+J1J3J_0 + J_1 \leq J_3.Comment: 4 pages, REVTeX, 4 figures in eps-file

    Instantaneous sea ice drift speed from TanDEM-X interferometry

    Get PDF
    The drift of sea ice is an important geophysical process with widespread implications for the ocean energy budget and ecosystems. Drifting sea ice can also threaten marine operations and present a hazard for ocean vessels and installations. Here, we evaluate single-pass along-track synthetic aperture radar (SAR) interferometry (S-ATI) as a tool to assess ice drift while discussing possible applications and inherent limitations. Initial validation shows that TanDEM-X phase-derived drift speed corresponds well with drift products from a ground-based radar at Utqiaġvik, Alaska. Joint analysis of TanDEM-X and Sentinel-1 data covering the Fram Strait demonstrates that S-ATI can help quantify the opening/closing rate of leads with possible applications for navigation. S-ATI enables an instantaneous assessment of ice drift and dynamic processes that are otherwise difficult to observe. For instance, by evaluating sea ice drift through the Vilkitsky Strait, Russia, we identified short-lived transient convergence patterns. We conclude that S-ATI enables the identification and analysis of potentially important dynamic processes (e.g., drift, rafting, and ridging). However, current limitations of S-ATI are significant (e.g., data availability and they presently only provide the cross-track vector component of the ice drift field) but may be significantly reduced with future SAR systems.</p

    Slow Relaxation of Spin Structure in Exotic Ferromagnetic Phase of Ising-like Heisenberg Kagome Antiferromagnets

    Full text link
    In the corner-sharing lattice, magnetic frustration causes macroscopic degeneracy in the ground state, which prevents systems from ordering. However, if the ensemble of the degenerate configuration has some global structure, the system can have a symmetry breaking phenomenon and thus posses a finite temperature phase transition. As a typical example of such cases, the magnetic phase transition of the Ising-like Heisenberg antiferromagnetic model on the kagome lattice has been studied. There, a phase transition of the two-dimensional ferromagnetic Ising universality class occurs accompanying with the uniform spontaneous magnetization. Because of the macroscopic degeneracy in the ordered phase, the system is found to show an entropy-driven ordering process, which is quantitatively characterized by the number of ``weathervane loop''. We investigate this novel type of slow relaxation in regularly frustrated system.Comment: 4 pages, 6 figure

    Spin-1/2 Heisenberg-Antiferromagnet on the Kagome Lattice: High Temperature Expansion and Exact Diagonalisation Studies

    Full text link
    For the spin-12\frac{1}{2} Heisenberg antiferromagnet on the Kagom\'e lattice we calculate the high temperature series for the specific heat and the structure factor. A comparison of the series with exact diagonalisation studies shows that the specific heat has further structure at lower temperature in addition to a high temperature peak at T2/3T\approx 2/3. At T=0.25T=0.25 the structure factor agrees quite well with results for the ground state of a finite cluster with 36 sites. At this temperature the structure factor is less than two times its T=T=\infty value and depends only weakly on the wavevector q\bf q, indicating the absence of magnetic order and a correlation length of less than one lattice spacing. The uniform susceptibility has a maximum at T1/6T\approx 1/6 and vanishes exponentially for lower temperatures.Comment: 15 pages + 5 figures, revtex, 26.04.9

    Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry

    Get PDF
    OBJECTIVE: Many surgeons consider the tricuspid valve to be a second-class structure. Our objective was to determine the normal anatomy and dynamic characteristics of the tricuspid valve apparatus in vivo and to discern whether this would aid the design of a tricuspid valve annuloplasty ring model.METHODS: Sixteen sonomicrometry crystals were placed around the tricuspid annulus, at the bases and tips of the papillary muscles, the free edges of the leaflets, and the right ventricular apex during cardiopulmonary bypass in 5 anesthetized York Hampshire pigs. Animals were studied after weaning of cardiopulmonary bypass on 10 cardiac cycles of normal hemodynamics. RESULTS: Sonomicrometry array localizations demonstrate the multiplanar shape of the tricuspid annulus. The tricuspid annulus reaches its maximum area (97.9 +/- 25.4 mm(2)) at the end of diastole and its minimum area (77.3 +/- 22.5 mm(2)) at the end of systole, and increases again in early diastole. Papillary muscles shorten by 0.8 to 1.5 mm (11.2%) in systole, and chordae tendineae straighten by 0.8 to 1.7 mm (11.4%) in systole. CONCLUSIONS: The shape of the tricuspid annulus is a multiplanar 3-dimensional one with its highest point at the anteroseptal commissure and its lowest point at the posteroseptal commissure, and the anteroposterior commissure is in a middle plane in between. The tricuspid annulus area reaches its maximum during diastole and its minimum during systole. The papillary muscles contract by the same amount of chordal straightening. The optimal tricuspid annuloplasty ring may be a multiplanar 3-dimensional one that mimics the normal tricuspid annulus

    Epidermal Growth Factor Stimulates Proliferation of Mouse Uterine Epithelial Cells in Primary Culture

    Get PDF
    Epidermal growth factor (EGF) is one of growth factors that are thought to mediate the stimulatory effects of estrogen on the proliferation of uterine epithelial cells. The present study was attempted to obtain direct evidence for the mitogenic effects of EGF on uterine epithelial cells, and to prove that EGF and EGF receptors are expressed in these cells. Mouse uterine epithelial cells were isolated from immature female mice and cultured with or without EGF for 5 days. EGF (1 to 100 ng/ml) significantly increased the number of uterine epithelial cells, and the maximal growth (141.9+/-8.3% of controls) was obtained at a dose of 10 ng/ml. In addition, EGF (0.1 to 100 ng/ml) increased the number of DNA-synthesizing cells immunocytochemically detected by bromodeoxyuridine uptake to the nucleus. Northern blot analysis revealed that the uterine epithelial cells expressed both EGF mRNA (4.7 kb) and EGF receptor mRNAs (10.5, 6.6, and 2.7 kb) These results suggest that the proliferation of uterine epithelial cells is regulated by the paracrine and/ or autocrine action of EGF. Our previous study demonstrated the mitogenic effect of IGF-I on uterine epithelial cells. To examine whether the EGF- and IGF-I signaling act at the same level in the regulation of the proliferation of uterine epithelial cells, the cultured cells were simultaneously treated with IGF-I and EGF. IGF-I was found to additively stimulate the mitogenic effects of EGF, suggesting that the EGF-induced growth of uterine epithelial cells is distinct from IGF-l-induced growth
    corecore