3 research outputs found

    A simple, regionally parameterized model for predicting nonpoint source areas in the northeastern US

    Get PDF
    Study Region: Ten watersheds in New York, New Jersey, and Pennsylvania, USA. Study Focus: A three parameter model based on variable source areas (VSAs) that does not require calibration within the region, was developed and tested. The model maintains a lumped daily water budget, but distributes runoff spatially using a soil topographic index (STI). We used ten gauged watersheds across the region to establish the model parameters, and compared model predicted VSAs against shallow water table depth and surface soil moisture field measurements in three sites. New Hydrological Insights for the Region: The model was able to correctly predict VSAs at all three monitoring sites, indicating that saturation-excess runoff is important in these watersheds. The pattern of error in the model suggests that lateral subsurface flow paths could be exerting an influence on overland runoff generation in a way that is not captured by a static STI. The model has potential to be used as part of a strategy to limit nonpoint source pollution from saturation-excess runoff dominated areas in the region, and has been incorporated into an online decision support tool in central NY (www.hsadss.bee.cornell.edu)

    A water balance-based Soil and Water Assessment Tool (SWAT) for improved performance in the Ethiopian highlands

    No full text
    In Awulachew, Seleshi Bekele; Erkossa, Teklu; Smakhtin, Vladimir; Fernando, Ashra (Comps.). Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile. Intermediate Results Dissemination Workshop held at the International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia, 5-6 February 2009. Colombo, Sri Lanka: International Water Management Institute (IWMI).The Soil Water Assessment Tool (SWAT) is a watershed model widely used to predict water quantity and quality under varying land use and water use regimes. To determine the respective amounts of infiltration and surface runoff, SWAT uses the popular Curve Number (CN). While being appropriate for engineering design in temperate climates, the CN is less than ideal when used in monsoonal regions where rainfall is concentrated into distinct time periods. The CN methodology is based on the assumption that Hortonian flow is the driving force behind surface runoff production, a questionable assumption in many regions. In monsoonal climates water balance models generally capture the runoff generation processes and thus the flux water or transport of chemicals and sediments better than CN-based models. In order to use SWAT in monsoonal climates, the CN routine to predict runoff was replaced with a simple water balance routine in the code base. To compare this new water balance-based SWAT (SWAT-WB) to the original CN-based SWAT (SWAT-CN), several watersheds in the headwaters of the Abay Blue Nile in Ethiopia were modeled at a daily time step. While long term, daily data is largely nonexistent for portions of the Abay Blue Nile, data was available for one 1,270 km2 subbasin of the Lake Tana watershed, northeast of Bahir Dar, Ethiopia, which was used to initialize both versions of SWAT. Prior to any calibration of the model, daily Nash-Sutcliffe model efficiencies improved from -0.05 to 0.39 for SWAT-CN and SWAT-WB, respectively. Following calibration of SWAT-WB, daily model efficiency improved to 0.73, indicating that SWAT can accurately model saturation-excess processes without using the Curve Number technique

    Development and application of a physically based landscape water balance in the SWAT model

    No full text
    Watershed scale hydrological and biogeochemical models rely on the correct spatial-temporal prediction of processes governing water and contaminant movement. The Soil and Water Assessment Tool (SWAT) model, one of the most commonly used watershed scale models, uses the popular curve number (CN) method to determine the respective amounts of infiltration and surface runoff. Although appropriate for flood forecasting in temperate climates, the CN method has been shown to be less than ideal in many situations (e.g. monsoonal climates and areas dominated by variable source area hydrology). The CN model is based on the assumption that there is a unique relationship between the average moisture content and the CN for all hydrologic response units (HRUs), and that the moisture content distribution is similar for each runoff event, which is not the case in many regions. Presented here is a physically based water balance that was coded in the SWAT model to replace the CN method of runoff generation. To compare this new water balance SWAT (SWAT-WB) to the original CN-based SWAT SWAT-CN), two watersheds were initialized; one in the headwaters of the Blue Nile in Ethiopia and one in the Catskill Mountains of New York. In the Ethiopian watershed, streamflow predictions were better using SWAT-WB than SWAT-CN [Nash-Sutcliffe efficiencies (NSE) of 0?79 and 0?67, respectively]. In the temperate Catskills, SWAT-WB and SWAT-CN predictions were approximately equivalent (NSE >0?70). The spatial distribution of runoff-generating areas differed greatly between the two models, with SWAT-WB reflecting the topographical controls imposed on the model. Results show that a water balance provides results equal to or better than the CN, but with a more physically based approach
    corecore