174 research outputs found

    Long-Stroke Nanopositioning Stage Driven by Piezoelectric Motor

    Get PDF

    2,5-Bis[(3-hy­droxy­prop­yl)amino]-1,4-benzoquinone monohydrate

    Get PDF
    The title compound, C12H18N2O4·H2O, was obtained as a product of the reaction of hydro­quinone with n-propanol amine. The compound crystallizes as a monohydrate, integrating water into its hydrogen-bonded network. Each diamino­quinone moiety forms two centrosymmetric 10-membered rings through C=O⋯H—N bonds. The resulting bands along [102] are inter­linked through hy­droxy groups and water mol­ecules into three-dimensional network. The chemically equivalent bond lengths in the diamino­quinone moiety exhibit a perceptible discrepancy [e.g. C=O bond lengths differ by 0.016 (2) Å], apparently as a result of asymmetric hydrogen bonding: one O atom serves as an acceptor of one hydrogen bond, whereas the other is an acceptor of two

    Effects of freeze-thaw action on in vivo and in vitro bioavailability of arsenic in soils from derelict industrial sites

    Get PDF
    Arsenic is a metalloid with carcinogenic properties and has been classified as a Category I carcinogen by the International Agency for Research on Cancer (IARC). Freeze-thaw processes affect the migration and transformation of soil heavy metals, as well as adsorption/desorption and redox reactions. However, there is limited research directly addressing the impact of freeze-thaw processes on the bioavailability of soil heavy metals. In this study, we focused on As and selected As-contaminated soil samples from three types of legacy sites in heavy industrial areas. Under controlled freeze-thaw experimental conditions, we utilized both in vivo and in vitro bioavailability measurement methods to investigate whether and how freeze-thaw processes affect the bioavailability of soil As. The results of this study showed that freeze-thaw processes reduced soil pH (P < 0.05), CEC, SOM, and particle size, with decreases of 0.33, 1.2 cmol/kg, 5.2 g/kg, and 54 µm, respectively. It also increased weight specific surface area (BET) (P < 0.05), with an increase of 300 m2/kg. Freeze-thaw processes increased the proportions of exchangeable (P < 0.05), carbonate-bound, and iron-manganese oxide-bound As (P < 0.05), but reduced the proportions of organic-bound and residual As (P < 0.05). Freeze-thaw processes significantly increased the relative bioavailability and bioaccessibility of As, with increases of 32 ± 9.6% and 13 ± 0.23%, respectively. Soil pH, SOM, BET and electronic conductivity (EC) were identified as factors which could contribute to the increased bioavailability of As due to freeze-thaw processes. These results provide new insights and evidence for refining the assessment of human health risks associated with heavy metal contamination in polluted soils

    Lnc-PKD2-2-3/miR-328/GPAM ceRNA Network Induces Cholangiocarcinoma Proliferation, Invasion and 5-FU Chemoresistance

    Get PDF
    PurposeOur previous study observed that long non-coding RNA PKD2-2-3 (lnc-PKD2-2-3) is related to advanced tumor features and worse prognosis in cholangiocarcinoma (CCA). Then, this study aimed to further explore the linkage between lnc-PKD2-2-3, miR-328, and GPAM, as well as their effects on regulating CCA viability, mobility, and chemosensitivity.MethodsLnc-PKD2-2-3, miR-328, and GPAM expression in 30 pairs of CCA tumor and adjacent tissues, as well as in CCA cell lines, were determined. Two CCA cell lines (HuCCT1 and TFK1) were transfected by lnc-PKD2-2-3 overexpression plasmid, lnc-PKD2-2-3 siRNA, miR-328 inhibitor, and GPAM siRNA alone or in combination, followed by cell proliferation, apoptosis, invasion, and 5-FU chemosensitivity detection. Besides, xenograft mice were established for validation.ResultsLnc-PKD2-2-3 and GPAM were higher, whereas miR-328 was lower in CCA tissues versus adjacent tissues and also in CCA cell lines versus control cells; meanwhile, they were correlated with each other (all P &lt;0.05). Lnc-PKD2-2-3 knockdown decreased CCA cell proliferation, invasion, and increased apoptosis (all P &lt;0.05), but lnc-PKD2-2-3 overexpression exhibited the opposite and weaker effect. MiR-328 knockdown induced CCA cell proliferation and invasion and also attenuated the effect of lnc-PKD2-2-3-knockdown in these functions (all P &lt;0.05). Subsequently, GPAM knockdown reduced CCA cell proliferation and invasion and also weakened the effect of miR-328-knockdown in these functions (all P &lt;0.05). Additionally, lnc-PKD2-2-3 positively regulated GPAM while negatively regulating miR-328. MiR-328 negatively modified GPAM in CCA cells. Luciferase gene reporter assays verified that lnc-PKD2-2-3 directly bound miR-328 and miR-328 directly bound GPAM. Finally, the lnc-PKD2-2-3/miR-328/GPAM network also regulated the 5-FU chemosensitivity of CCA cells. In vivo experiments further revealed that lnc-PKD2-2-3 overexpression promoted tumor volume and weight but repressed tumor apoptosis in xenograft mice; meanwhile, it increased GPAM expression but decreased miR-328 expression (all P &lt;0.05). Conversely, lnc-PKD2-2-3 knockdown exhibited the opposite effects (all P &lt;0.05).ConclusionLnc-PKD2-2-3/miR-328/GPAM ceRNA network promotes CCA proliferation, invasion, and 5-FU chemoresistance

    Understanding the Kinetic Energy deposition within Molecular Clouds

    Full text link
    According to the structures traced by 13^{13}CO spectral lines within the 12^{12}CO molecular clouds (MCs), we investigate the contributions of their internal gas motions and relative motions to the total velocity dispersions of 12^{12}CO MCs. Our samples of 2851 12^{12}CO MCs harbor a total of 9556 individual 13^{13}CO structures, among which 1848 MCs (\sim 65%\%) have one individual 13^{13}CO structure and the other 1003 MCs (\sim 35%\%) have multiple 13^{13}CO structures. We find that the contribution of the relative motion between 13^{13}CO structures (σ13CO,re\sigma_{\rm ^{13}CO, re}) is larger than that from their internal gas motion (σ13CO,in\sigma_{\rm ^{13}CO, in}) in \sim 62%\% of 1003 MCs in the `multiple' regime. In addition, we find the σ13CO,re\sigma_{\rm ^{13}CO, re} tends to increase with the total velocity dispersion(σ12CO,tot\sigma_{\rm ^{12}CO, tot}) in our samples, especially for the MCs having multiple 13^{13}CO structures. This result provides a manifestation of the macro-turbulent within MCs, which gradually becomes the dominant way to store the kinetic energy along with the development of MC scales.Comment: 15 pages, 13 figures, accepted for publication in Ap

    Case report: Levodopa-responsive parkinsonism with akinetic mutism after ventriculo-peritoneal shunt

    Get PDF
    BackgroundParkinsonism and akinetic mutism (AM) following ventriculo-peritoneal shunt (VPS) without underdrainage used to be considered rare, but may be underdiagnosed in daily clinical practice. Although the pathophysiology is still unclear, in several case reports, the parkinsonism and AM after VPS shows responsiveness to dopaminergic treatment.Case presentationWe report a 19-year-old male that presented with severe parkinsonism and AM after VPS. Meanwhile, 18F-FDG-PET showed a cortical and subcortical hypometabolism. Fortunately, levodopa dramatically improved patient's symptoms and brain hypometabolism. This report provides support for the possibility that dopamine deficiency inhibits brain metabolism, and further elucidates the pathogenesis of parkinsonism and AM.ConclusionThis report highlights the presentation of a treatable parkinsonism and points out that Levodopa and/or dopamine agonist should be the first choice if the patients develop parkinson-like symptoms after VPS

    Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose

    Get PDF
    The giant panda feeds almost exclusively on bamboo, a diet highly enriched in lignin and cellulose, but is characterized by a digestive tract similar to carnivores. It is still large unknown if and how the giant panda gut microbiota contributes to lignin and cellulose degradation. Here we show the giant pandas’ gut microbiota does not significantly contribute to cellulose and lignin degradation. We found that no operational taxonomic unit had a nearest neighbor identified as a cellulolytic species or strain with a significant higher abundance in juvenile than cubs, a very low abundance of putative lignin and cellulose genes existed in part of analyzing samples but a significant higher abundance of genes involved in starch and hemicellulose degradation in juveniles than cubs. Moreover, a significant lower abundance of putative cellulolytic genes and a significant higher abundance of putative α-amylase and hemicellulase gene families were present in giant pandas than in omnivores or herbivores

    RNA-seq provides insights into potato deubiquitinase responses to drought stress in seedling stage

    Get PDF
    Ubiquitination is a specific protein degradation and reversible post-translational modification process that can be reversed by deubiquitinase (DUBs). DUBs can hydrolyze and release ubiquitin in the substrate protein so that the substrate can avoid degradation or change its activity, and it has an impact on plant growth and development, cell cycle, abiotic stress response, and other biological processes. Transcript sequences of potato varieties “DM1-3”, “Atlantic” and “Cooperation-88” downloaded from Potato Genome Resources were used for genome-wide identification of the DUB gene family using Hidden Markov Models and verified in the NCBI CD-Search tool. The characteristics of DUB genes from different potato varieties were analyzed including subcellular localization, gene structural motifs, phylogenetic tree, and sequence homology. Polyethylene glycol 6000 (PEG6000) induced drought stress transcriptome analysis was performed on the “Atlantic”, and differentially expressed genes were screened, with emphasis on the characterization of deubiquitinase. DUB genes have a complex gene structure, often with a large number of exons and alternative splicing. Their promoters contain abundant abiotic stress-responsive elements, such as 425 MYC, 325 ABRE, and 320 MYB. There are also a large number of orthologous genes in the DUBs of the three potato varieties, and these genes are often clustered in similar regions on the genome. We performed transcriptome sequencing of the potato under PEG-induced drought stress and analyzed it for the first time using the Atlantic as a reference genome. We identified a total of 6067 down-regulated differentially expressed genes (DEGs) and 4950 up-regulated DEGs under PEG-induced drought stress. We screened the expression of DUBs and observed that 120 DUBs were up-regulated where most of them functioned in the nucleus, and the interacting proteins of DUBs were also localized in the nucleus. We have comprehensively identified and analyzed potato DUBs, and the accurately aligned transcriptome data which will further deepen the understanding of DUBs involved in the regulation of osmotic stress

    Exploring the Potential of Integrated Optical Sensing and Communication (IOSAC) Systems with Si Waveguides for Future Networks

    Full text link
    Advanced silicon photonic technologies enable integrated optical sensing and communication (IOSAC) in real time for the emerging application requirements of simultaneous sensing and communication for next-generation networks. Here, we propose and demonstrate the IOSAC system on the silicon nitride (SiN) photonics platform. The IOSAC devices based on microring resonators are capable of monitoring the variation of analytes, transmitting the information to the terminal along with the modulated optical signal in real-time, and replacing bulk optics in high-precision and high-speed applications. By directly integrating SiN ring resonators with optical communication networks, simultaneous sensing and optical communication are demonstrated by an optical signal transmission experimental system using especially filtering amplified spontaneous emission spectra. The refractive index (RI) sensing ring with a sensitivity of 172 nm/RIU, a figure of merit (FOM) of 1220, and a detection limit (DL) of 8.2*10-6 RIU is demonstrated. Simultaneously, the 1.25 Gbps optical on-off-keying (OOK) signal is transmitted at the concentration of different NaCl solutions, which indicates the bit-error-ratio (BER) decreases with the increase in concentration. The novel IOSAC technology shows the potential to realize high-performance simultaneous biosensing and communication in real time and further accelerate the development of IoT and 6G networks.Comment: 11pages, 5 figutre
    corecore