558 research outputs found

    Global strong solutions to the compressible Navier-Stokes system with potential temperature transport

    Full text link
    We study the global strong solutions to the compressible Navier-Stokes system with potential temperature transport in Rn.\mathbb{R}^n. Different from the Navier-Stokes-Fourier system, the pressure is a nonlinear function of the density and the potential temperature, we can not exploit the special quasi-diagonalization structure of this system to capture any dissipation of the density. Some new idea and delicate analysis involved in high or low frequency decomposition in the Besov spaces have to be made to close the energy estimates.Comment: 12page

    HGT: A Hierarchical GCN-Based Transformer for Multimodal Periprosthetic Joint Infection Diagnosis Using CT Images and Text

    Full text link
    Prosthetic Joint Infection (PJI) is a prevalent and severe complication characterized by high diagnostic challenges. Currently, a unified diagnostic standard incorporating both computed tomography (CT) images and numerical text data for PJI remains unestablished, owing to the substantial noise in CT images and the disparity in data volume between CT images and text data. This study introduces a diagnostic method, HGT, based on deep learning and multimodal techniques. It effectively merges features from CT scan images and patients' numerical text data via a Unidirectional Selective Attention (USA) mechanism and a graph convolutional network (GCN)-based feature fusion network. We evaluated the proposed method on a custom-built multimodal PJI dataset, assessing its performance through ablation experiments and interpretability evaluations. Our method achieved an accuracy (ACC) of 91.4\% and an area under the curve (AUC) of 95.9\%, outperforming recent multimodal approaches by 2.9\% in ACC and 2.2\% in AUC, with a parameter count of only 68M. Notably, the interpretability results highlighted our model's strong focus and localization capabilities at lesion sites. This proposed method could provide clinicians with additional diagnostic tools to enhance accuracy and efficiency in clinical practice

    Efficacy of some selected neo-adjuvant chemotherapy regimens in the treatment of advanced oral squamous cell carcinoma, and their effects on immune function

    Get PDF
    Purpose: To investigate the clinical efficacy of different neo-adjuvant chemotherapy (NACT) regimens in the treatment of advanced oral squamous cell carcinoma (OSCC), and their influence on immune function of the patients.Methods: Advanced OSCC patients (n = 94) who received NACT served as subjects in this study. They were assigned to 2 different treatment groups. Forty patients received docetaxel and fluorouracil regimen (DF group), while 54 patients received taxotere, cisplatin and fluorouracil regimen (TPF group). Surgery was performed after NACT. Changes in clinical efficacy and immune function were monitored in both groups. The clinical baseline data of patients were assessed prior to the treatments. Independent indicators of prognosis were determined using Cox regression analysis (CRA).Results: Clinical treatment efficacy was higher in TPF group than in DF group (p < 0.05). Objective remission rate (ORR) in DF group was lower than that in TPF group (p < 0.05). After chemotherapy, both groups had increased levels of CD4+ and CD4+/CD8+, and reduced level of CD8+, when compared with pre-chemotherapy values, with higher levels of CD4+ and CD4+/CD8+ ratio, and lower level of CD8+ in TPF group than in DF group (p < 0.05). Multivariate CRA revealed that the independent factors for prognosis of oral carcinoma (OC) were tumor node metastasis (TNM) stage and lymph node metastasis.Conclusion: These results indicate that TFP regimen improves clinical efficacy and immune function in patients with advanced OSCC

    Electro-Chemo-Mechanical Failure Mechanisms of Solid-State Electrolytes

    Get PDF
    Solid-state lithium-metal batteries (SSLMBs) are considered as the next-generation energy storage systems due to their high theoretical energy density and safety. However, the practical deployment of SSLMBs has been impeded by the failure of solid-state electrolytes (SSEs) which is indicated by the increased impedance, elevated polarization, and capacity degradation. The failure is commonly a result of lithium (Li) dendrite growth and propagation, inactive Li generation, unstable interface formation, void and pore formation, and crack infiltration. The failure processes can be divided into electric failure, (electro)chemical failure, and mechanical failure based on the different mechanisms. The systematical understanding of SSEs failure is crucial for the development of SSEs. Therefore, this review comprehensively summarizes the details of the three SSEs failure to provide new insights for future studies, shedding light on the design of SSLMBs with high energy density, safety, and cycling stability. Failure mechanisms: This review provides a comprehensive summary of the coupled electro-chemo-mechanical failure mechanisms of solid-state electrolytes. The electric failure results from the short circuits caused by growth and propagation of Li dendrites and the capacity loss because of inactive Li formation. The formation of kinetics/thermal unstable interphase accounts for the (electro)chemical failure. Cracks infiltration and voids/pores formation lead to mechanical failure
    • …
    corecore