238 research outputs found

    Quantum local asymptotic normality based on a new quantum likelihood ratio

    Get PDF
    We develop a theory of local asymptotic normality in the quantum domain based on a novel quantum analogue of the log-likelihood ratio. This formulation is applicable to any quantum statistical model satisfying a mild smoothness condition. As an application, we prove the asymptotic achievability of the Holevo bound for the local shift parameter.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1147 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Autoparallelity of Quantum Statistical Manifolds in The Light of Quantum Estimation Theory

    Full text link
    In this paper we study the autoparallelity w.r.t. the e-connection for an information-geometric structure called the SLD structure, which consists of a Riemannian metric and mutually dual e- and m-connections, induced on the manifold of strictly positive density operators. Unlike the classical information geometry, the e-connection has non-vanishing torsion, which brings various mathematical difficulties. The notion of e-autoparallel submanifolds is regarded as a quantum version of exponential families in classical statistics, which is known to be characterized as statistical models having efficient estimators (unbiased estimators uniformly achieving the equality in the Cramer-Rao inequality). As quantum extensions of this classical result, we present two different forms of estimation-theoretical characterizations of the e-autoparallel submanifolds. We also give several results on the e-autoparallelity, some of which are valid for the autoparallelity w.r.t. an affine connection in a more general geometrical situation
    corecore