16,563 research outputs found

    Personal Values of Japanese Business Managers

    Get PDF
    Researchers have spent many years examining the Japanese business culture, but there is limited empirical evidence about the personal values of Japanese business managers. The research of these authors confirms some previous conclusions, but also might detect new attitudes in Japan at the dawn of the 21st century

    Determination of mass outflow from a thunderstorm complex using ATS 3 pictures

    Get PDF
    Satellite cloud photography for determining mass outflow and tornado formatio

    The Variation of Gas Mass Distribution in Galaxy Clusters: Effects of Preheating and Shocks

    Full text link
    We investigate the origin of the variation of the gas mass fraction in the core of galaxy clusters, which was indicated by our work on the X-ray fundamental plane. The adopted model supposes that the gas distribution characterized by the slope parameter is related to the preheated temperature. Comparison with observations of relatively hot (~> 3 keV) and low redshift clusters suggests that the preheated temperature is about 0.5-2 keV, which is higher than expected from the conventional galactic wind model and possibly suggests the need for additional heating such as quasars or gravitational heating on the largest scales at high redshift. The dispersion of the preheated temperature may be attributed to the gravitational heating in subclusters. We calculate the central gas fraction of a cluster from the gas distribution, assuming that the global gas mass fraction is constant within a virial radius at the time of the cluster collapse. We find that the central gas density thus calculated is in good agreement with the observed one, which suggests that the variation of gas mass fraction in cluster cores appears to be explained by breaking the self-similarity in clusters due to preheated gas. We also find that this model does not change major conclusions on the fundamental plane and its cosmological implications obtained in previous papers, which strongly suggests that not only for the dark halo but also for the intracluster gas the core structure preserves information about the cluster formation.Comment: 17 pages, to be published in Ap

    Three-body spin-orbit forces from chiral two-pion exchange

    Full text link
    Using chiral perturbation theory, we calculate the density-dependent spin-orbit coupling generated by the two-pion exchange three-nucleon interaction involving virtual Δ\Delta-isobar excitation. From the corresponding three-loop Hartree and Fock diagrams we obtain an isoscalar spin-orbit strength Fso(kf)F_{\rm so}(k_f) which amounts at nuclear matter saturation density to about half of the empirical value of 9090 MeVfm5^5. The associated isovector spin-orbit strength Gso(kf)G_{\rm so}(k_f) comes out about a factor of 20 smaller. Interestingly, this three-body spin-orbit coupling is not a relativistic effect but independent of the nucleon mass MM. Furthermore, we calculate the three-body spin-orbit coupling generated by two-pion exchange on the basis of the most general chiral ππNN\pi\pi NN-contact interaction. We find similar (numerical) results for the isoscalar and isovector spin-orbit strengths Fso(kf)F_{\rm so}(k_f) and Gso(kf)G_{\rm so}(k_f) with a strong dominance of the p-wave part of the ππNN\pi\pi NN-contact interaction and the Hartree contribution.Comment: 8 pages, 4figure, published in : Physical Review C68, 054001 (2003

    Review of solar fuel-producing quantum conversion processes

    Get PDF
    The status and potential of fuel-producing solar photochemical processes are discussed. Research focused on splitting water to produce dihydrogen and is at a relatively early stage of development. Current emphasis is primarily directed toward understanding the basic chemistry underlying such quantum conversion processes. Theoretical analyses by various investigators predict a limiting thermodynamic efficiency of 31% for devices with a single photosystem operating with unfocused sunlight at 300 K. When non-idealities are included, it appears unlikely that actual devices will have efficiencies greater than 12 to 15%. Observed efficiencies are well below theoretical limits. Cyclic homogeneous photochemical processes for splitting water have efficiencies considerably less than 1%. Efficiency can be significantly increased by addition of a sacrificial reagent; however, such systems are no longer cyclic and it is doubtful that they would be economical on a commercial scale. The observed efficiencies for photoelectrochemical processes are also low but such systems appear more promising than homogeneous photochemical systems. Operating and systems options, including operation at elevated temperature and hybrid and coupled quantum-thermal conversion processes, are also considered

    Solar photochemical process engineering for production of fuels and chemicals

    Get PDF
    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6% are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6%. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel

    Effects of Ram-Pressure from Intracluster Medium on the Star Formation Rate of Disk Galaxies in Clusters of Galaxies

    Get PDF
    Using a simple model of molecular cloud evolution, we have quantitatively estimated the change of star formation rate (SFR) of a disk galaxy falling radially into the potential well of a cluster of galaxies. The SFR is affected by the ram-pressure from the intracluster medium (ICM). As the galaxy approaches the cluster center, the SFR increases to twice the initial value, at most, in a cluster with high gas density and deep potential well, or with a central pressure of ∼10−2cm−3keV\sim 10^{-2} cm^{-3} keV because the ram-pressure compresses the molecular gas of the galaxy. However, this increase does not affect the color of the galaxy significantly. Further into the central region of the cluster (≲1\lesssim 1 Mpc from the center), the SFR of the disk component drops rapidly due to the effect of ram-pressure stripping. This makes the color of the galaxy redder and makes the disk dark. These effects may explain the observed color, morphology distribution and evolution of galaxies in high-redshift clusters. By contrast, in a cluster with low gas density and shallow potential well, or the central pressure of ∼10−3cm−3keV\sim 10^{-3} cm^{-3} keV, the SFR of a radially infalling galaxy changes less significantly, because neither ram-pressure compression nor stripping is effective. Therefore, the color of galaxies in poor clusters is as blue as that of field galaxies, if other environmental effects such as galaxy-galaxy interaction are not effective. The predictions of the model are compared with observations.Comment: 19 pages, 9 figures, to appear in Ap

    Spin polarization of electron current through a potential barrier in two-dimensional structures with spin-orbit interaction

    Full text link
    We show that an initially unpolarized electron flow acquires spin polarization after passing through a lateral barrier in two-dimensional (2D) system with spin-orbit interaction (SOI) even if the current is directed normally to the barrier. The generated spin current depends on the distance from the barrier. It oscillates with the distance in the vicinity of the barrier and asymptotically reaches a constant value. The most efficient generation of the spin current (with polarization above 50%) occurs, when the Fermi energy is near the potential barrier maximum. Since the spin current in SOI medium is not unambiguously defined we propose to pass this current from the SOI region into a contacting region without SOI and show, that the spin polarization loss under such transmission can be negligible.Comment: 11 pages, 6 figures, accepted for publication in Journal of Physics: Condensed Matte

    Fano-Kondo effect in a two-level system with triple quantum dots: shot noise characteristics

    Full text link
    We theoretically compare transport properties of Fano-Kondo effect with those of Fano effect. We focus on shot noise characteristics of a triple quantum dot (QD) system in the Fano-Kondo region at zero temperature, and discuss the effect of strong electric correlation in QDs. We found that the modulation of the Fano dip is strongly affected by the on-site Coulomb interaction in QDs.Comment: 4 pages, 6figure
    • …
    corecore