48 research outputs found

    All-peptide-based polyion complex vesicles: Facile preparation and encapsulation of the protein in active form

    Get PDF
    The polyion complex vesicle (PICsome) is a promising platform for bioactive molecule delivery as well as nanoreactor systems. In addition to anionic and cationic charged blocks, a hydrophilic poly(ethylene glycol) (PEG) block is mostly employed for PICsome formation; however, the long-term safety of the PEG component in vivo is yet to be clarified. In this study, we developed novel PEG-free PICsome comprising all peptide components. Instead of the PEG block, we selected the sarcosine (Sar) oligomer as a hydrophilic block and fused it with anionic oligo(l-glutamic acid). Mixing the Sar-containing anionic peptide with cationic oligo(l-lysine) resulted in the formation of stable vesicles. The peptide-based PICsome was able to encapsulate a model protein in its hollow structure. After modification of the surface with a cell-penetrating peptide, the protein-encapsulated PICsome was successfully delivered into plant cells, indicating its promised for application as a biocompatible carrier for protein delivery

    Plant Mitochondrial-Targeted Gene Delivery by Peptide/DNA Micelles Quantitatively Surface-Modified with Mitochondrial Targeting and Membrane-Penetrating Peptides

    Get PDF
    Plant mitochondria play essential roles in metabolism and respiration. Recently, there has been growing interest in mitochondrial transformation for developing crops with commercially valuable traits, such as resistance to environmental stress and shorter fallow periods. Mitochondrial targeting and cell membrane penetration functions are crucial for improving the gene delivery efficiency of mitochondrial transformation. Here, we developed a peptide-based carrier, referred to as Cytcox/KAibA-Mic, that contains multifunctional peptides for efficient transfection into plant mitochondria. We quantified the mitochondrial targeting and cell membrane-penetrating peptide modification rates to control their functions. The modification rates were easily determined from high-performance liquid chromatography chromatograms. Additionally, the gene carrier size remained constant even when the mitochondrial targeting peptide modification rate was altered. Using this gene carrier, we can quantitatively investigate the relationships between various peptide modifications and transfection efficiency and optimize the gene carrier conditions for mitochondrial transfection

    Peptide-Based Polyion Complex Vesicles That Deliver Enzymes into Intact Plants To Provide Antibiotic Resistance without Genetic Modification

    Get PDF
    Direct delivery of enzymes into intact plants using cell-penetrating peptides (CPPs) is an attractive approach for modifying plant functions without genetic modification. However, by conventional methods, it is difficult to maintain the enzyme activity for a long time because of proteolysis of the enzymes under physiological conditions. Here, we developed a novel enzyme delivery system using polyion complex vesicles (PICsomes) to protect the enzyme from proteases. We created PICsome-bearing reactive groups at the surface by mixing an anionic block copolymer, alkyne-TEG-P(Lys-COOH), and a cationic peptide, P(Lys). The PICsome encapsulated neomycin phosphotransferase II (NPTII), a kanamycin resistance enzyme, and protected NPTII from proteases in vitro. A CPP-modified PICsome delivered NPTII into the root hair cells of Arabidopsis thaliana seedlings and provided kanamycin resistance in the seedlings that lasted for 7 days. Thus, the PICsome-mediated enzyme delivery system is a promising method for imparting long-term transient traits to plants without genetic modification

    Non-transgenic Gene Modulation via Spray Delivery of Nucleic Acid/Peptide Complexes into Plant Nuclei and Chloroplasts

    Get PDF
    【研究成果】スプレーで植物を改変 --簡便な非遺伝子組換え植物改変法の開発--. 京都大学プレスリリース. 2022-02-24.Genetic engineering of economically important traits in plants is an effective way to improve global welfare. However, introducing foreign DNA molecules into plant genomes to create genetically engineered plants not only requires a lengthy testing period and high developmental costs but also is not well-accepted by the public due to safety concerns about its effects on human and animal health and the environment. Here, we present a high-throughput nucleic acids delivery platform for plants using peptide nanocarriers applied to the leaf surface by spraying. The translocation of sub-micrometer-scale nucleic acid/peptide complexes upon spraying varied depending on the physicochemical characteristics of the peptides and was controlled by a stomata-dependent-uptake mechanism in plant cells. We observed efficient delivery of DNA molecules into plants using cell-penetrating peptide (CPP)-based foliar spraying. Moreover, using foliar spraying, we successfully performed gene silencing by introducing small interfering RNA molecules in plant nuclei via siRNA-CPP complexes and, more importantly, in chloroplasts via our CPP/chloroplast-targeting peptide-mediated delivery system. This technology enables effective nontransgenic engineering of economically important plant traits in agricultural systems
    corecore