507 research outputs found
Physical Properties, Star Formation, and Active Galactic Nucleus Activity in Balmer Break Galaxies at 0 < z < 1
We present a spectroscopic study with the derivation of the physical
properties of 37 Balmer break galaxies, which have the necessary lines to
locate them in star-forming-AGN diagnostic diagrams. These galaxies span a
redshift range from 0.045 to 0.93 and are somewhat less massive than similar
samples of previous works. The studied sample has multiwavelength photometric
data coverage from the ultraviolet to MIR Spitzer bands. We investigate the
connection between star formation and AGN activity via optical, mass-excitation
(MEx) and MIR diagnostic diagrams. Through optical diagrams, 31 (84%)
star-forming galaxies, 2 (5%) composite galaxies and 3 (8%) AGNs were
classified, whereas from the MEx diagram only one galaxy was classified as AGN.
A total of 19 galaxies have photometry available in all the IRAC/Spitzer bands.
Of these, 3 AGN candidates were not classified as AGN in the optical diagrams,
suggesting they are dusty/obscured AGNs, or that nuclear star formation has
diluted their contributions. Furthermore, the relationship between SFR surface
density (\Sigma_{SFR}) and stellar mass surface density per time unit
(\Sigma_{M_{\ast}/\tau}) as a function of redshift was investigated using the
[OII] \lambda3727, 3729, H\alpha \lambda6563 luminosities, which revealed that
both quantities are larger for higher redshift galaxies. We also studied the
SFR and SSFR versus stellar mass and color relations, with the more massive
galaxies having higher SFR values but lower SSFR values than less massive
galaxies. These results are consistent with previous ones showing that, at a
given mass, high-redshift galaxies have on average larger SFR and SSFR values
than low-redshift galaxies. Finally, bluer galaxies have larger SSFR values
than redder galaxies and for a given color the SSFR is larger for higher
redshift galaxies.Comment: preprint version, 36 pages, 17 figures, 3 tables, accepted for
publication in the Astrophysical Journa
The Retroperitoneum Protects Prosthetic Graft Material from Intraperitoneal Contamination: An Experimental Study
AbstractObjectivesTo evaluate the ability of the retroperitoneum to serve as a barrier, against bacterial contamination, between the peritoneal cavity to the retroperitoneal space.MethodsSeventy rats had a small piece of knitted Dacron graft placed in the retroperitoneal space and 106–109 colony forming unit (cfu) Enterococcus faecalis was injected into the peritoneal cavity. In half the retroperitoneal (RP) group, the retroperitoneum was preserved and in the remainder, the open peritoneal (OP) group, needle holes were created. Grafts were harvested after 1, 4, or 7 days and cultured for E. faecalis. A blood sample was collected from three rats in each group for culture before the graft was harvested.ResultsGraft infection did not develop in any rat injected with 106 or 107 cfu in the RP group, while seven out of the 10 graft cultures of the OP group grew E. faecalis (P=0.003). In rats injected with 108 or 109 cfu, five out of the 10 graft cultures in the RP group and eight out of 10 in the OP group grew E. faecalis. All blood cultures were negative when the injected bacterial count was 107 cfu or less. One out of the three blood cultures was positive at 108 cfu, and all were positive at 109 cfu.ConclusionsThese results suggest that an intact retroperitroneum acts as a protective barrier against intraperitoneal bacterial contamination, particularly when blood cultures are negative
High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes
We present the results of high precision measurements of the thermal
expansion of the sintered SiC, SiC-100, intended for use in cryogenic
space-telescopes, in which minimization of thermal deformation of the mirror is
critical and precise information of the thermal expansion is needed for the
telescope design. The temperature range of the measurements extends from room
temperature down to 10 K. Three samples, #1, #2, and #3 were
manufactured from blocks of SiC produced in different lots. The thermal
expansion of the samples was measured with a cryogenic dilatometer, consisting
of a laser interferometer, a cryostat, and a mechanical cooler. The typical
thermal expansion curve is presented using the 8th order polynomial of the
temperature. For the three samples, the coefficients of thermal expansion
(CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were
derived for temperatures between 293 K and 10 K. The average and the dispersion
(1 rms) of these three CTEs are 0.816 and 0.002 (/K),
respectively. No significant difference was detected in the CTE of the three
samples from the different lots. Neither inhomogeneity nor anisotropy of the
CTE was observed. Based on the obtained CTE dispersion, we performed an
finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m
diameter cryogenic mirror made of six SiC-100 segments. It was shown that the
present CTE measurement has a sufficient accuracy well enough for the design of
the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope
for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure
Topological magnetic structures of MnGe: a neutron diffraction and symmetry analysis study
From new neutron powder diffraction experiments on the chiral cubic
() magnet manganese germanide MnGe, we analyse all of the possible
crystal symmetry-allowed magnetic superstructures that are determined
successfully from the data. The incommensurate propagation vectors of the
magnetic structure are found to be aligned with the [100] cubic axes, and
correspond to a magnetic periodicity of about 30 at 1.8 K. Several
maximal crystallographic symmetry magnetic structures are found to fit the data
equally well and are presented. These include topologically non-trivial
magnetic hedgehog and "skyrmion" structures in multi- cubic 3+3 and
orthorhombic 3+2 dimensional magnetic superspace groups respectively, with
either potentially responsible for topological Hall effect [1]. The presence of
microstrain-like peak broadening caused by the transition to the magnetically
ordered state would seem to favour a "skyrmion"-like magnetic structure, though
this does not rule out the cubic magnetic hedgehog structure. We also report on
a new combined mechanochemical and solid-state chemical route to synthesise
MnGe at ambient pressures and moderate temperatures, and compare with samples
obtained by the traditional high pressure synthesis
Recommended from our members
Numerical modelling and comparison of MgB<inf>2</inf> bulks fabricated by HIP and infiltration growth
MgB_2 in bulk form shows great promise as trapped field magnets (TFMs) as an alternative to bulk (RE)BCO materials to replace permanent magnets in applications such as rotating machines, magnetic bearings and magnetic separation, and the relative ease of fabrication of MgB_2 materials has enabled a number of different processing techniques to be developed. In this paper, a comparison is made between bulk MgB_2 samples fabricated by the hot isostatic pressing (HIP), with and without Ti-doping, and infiltration growth (IG) methods and the highest trapped field in an IG-processed bulk MgB_2 sample, B_z = 2.12 at 5 K and 1.66 T at 15 K, is reported. Since bulk MgB_2 has a more homogeneous J_c distribution than (RE)BCO bulks, studies on such systems are made somewhat easier because simplified assumptions regarding the geometry and J_c distribution can be made, and a numerical simulation technique based on the 2D axisymmetric H-formulation is introduced to model the complete process of field cooling (FC) magnetization. As input data for the model, the measured J_c(B,T) characteristics of a single, small specimen taken from each bulk sample are used, in addition to measured specific heat and thermal conductivity data for the materials. The results of the simulation reproduce the experimental results extremely well: (1) indicating the samples have excellent homogeneity, and (2) validating the numerical model as a fast, accurate and powerful tool to investigate the trapped field profile of bulk MgB_2 discs of any size accurately, under any specific operating conditions. Finally, the paper is concluded with a numerical analysis of the influence of the dimensions of the bulk sample on the trapped field.JZ would like to acknowledge the support of Churchill College, Cambridge, the China Scholarship Council and the Cambridge Commonwealth, European and International Trust. MA would like to acknowledge the support of a Royal Academy of Engineering Research Fellowship. HF would like to acknowledge support in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This research was also supported in part by a Royal Society International Exchanges Scheme grant, IE131084. J-FF would like to thank the Ministry of Higher Education through the Research Council of the University of Liege (Action de Recherches Concertées grant, ARC 11/16-03).This is the author accepted manuscript. The final version is available from IOP via http://dx.doi.org/10.1088/0953-2048/28/7/07500
J- and Ks-band Galaxy Counts and Color Distributions in the AKARI North Ecliptic Pole Field
We present the J- and Ks-band galaxy counts and galaxy colors covering 750
square arcminutes in the deep AKARI North Ecliptic Pole (NEP) field, using the
FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer
(FLAMINGOS) on the Kitt Peak National Observatory (KPNO) 2.1m telescope. The
limiting magnitudes with a signal-to-noise ratio of three in the deepest
regions are 21.85 and 20.15 in the J- and Ks-bands respectively in the Vega
magnitude system. The J- and Ks-band galaxy counts in the AKARI NEP field are
broadly in good agreement with those of other results in the literature,
however we find some indication of a change in the galaxy number count slope at
J~19.5 and over the magnitude range 18.0 < Ks < 19.5. We interpret this feature
as a change in the dominant population at these magnitudes because we also find
an associated change in the B - Ks color distribution at these magnitudes where
the number of blue samples in the magnitude range 18.5 < Ks < 19.5 is
significantly larger than that of Ks < 17.5
Star Formation and AGN activity in Galaxies classified using the 1.6 {\mu}m Bump and PAH features at
We have studied the star-formation and AGN activity of massive galaxies in
the redshift range , which are detected in a deep survey field using
the AKARI InfraRed (IR) astronomical satellite and {\em Subaru} telescope
toward the North Ecliptic Pole (NEP). The AKARI/IRC Mid-InfraRed (MIR)
multiband photometry is used to trace their star-forming activities with the
Polycyclic-Aromatic Hydrocarbon (PAH) emissions, which is also used to
distinguish star-forming populations from AGN dominated ones and to estimate
the Star Formation Rate (SFR) derived from their total emitting IR (TIR)
luminosities. In combination with analyses of their stellar components, we have
studied the MIR SED features of star-forming and AGN-harboring galaxies.Comment: 45 pages and 63 figures, will be published in PASJ Vol.64 No.
The Infrared Camera (IRC) for AKARI - Design and Imaging Performance
The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI
satellite. It is designed for wide-field deep imaging and low-resolution
spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed
observation mode of AKARI. IRC is also operated in the survey mode to make an
all-sky survey at 9 and 18um. It comprises three channels. The NIR channel
(1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S
(4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity
band conduction arrays. Each of the three channels has a field-of-view of about
10' x 10' and are operated simultaneously. The NIR and MIR-S share the same
field-of-view by virtue of a beam splitter. The MIR-L observes the sky about
$25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the
formation and evolution of galaxies, the evolution of planetary disks, the
process of star-formation, the properties of interstellar matter under various
physical conditions, and the nature and evolution of solar system objects. The
in-flight performance of IRC has been confirmed to be in agreement with the
pre-flight expectation. This paper summarizes the design and the in-flight
operation and imaging performance of IRC.Comment: Publications of the Astronomical Society of Japan, in pres
Management of esophageal stricture after complete circular endoscopic submucosal dissection for superficial esophageal squamous cell carcinoma
<p>Abstract</p> <p>Background</p> <p>Endoscopic submucosal dissection (ESD) permits removal of esophageal epithelial neoplasms <it>en bloc</it>, but is associated with esophageal stenosis, particularly when ESD involves the entire circumference of the esophageal lumen. We examined the effectiveness of systemic steroid administration for control of postprocedural esophageal stricture after complete circular ESD.</p> <p>Methods</p> <p>Seven patients who underwent wholly circumferential ESD for superficially extended esophageal squamous cell carcinoma were enrolled in this study. In 3 patients, prophylactic endoscopic balloon dilatation (EBD) was started on the third post-ESD day and was performed twice a week for 8 weeks. In 4 patients, oral prednisolone was started with 30 mg daily on the third post-ESD day, tapered gradually (daily 30, 30, 25, 25, 20, 15, 10, 5 mg for 7 days each), and then discontinued at 8 weeks. EBD was used as needed whenever patients complained of dysphagia.</p> <p>Results</p> <p><it>En bloc </it>ESD with tumor-free margins was safely achieved in all cases. Patients in the prophylactic EBD group required a mean of 32.7 EBD sessions; the postprocedural stricture was dilated up to 18 mm in diameter in these patients. On the other hand, systemic steroid administration substantially reduced or eliminated the need for EBD. Corticosteroid therapy was not associated with any adverse events. Post-ESD esophageal stricture after complete circular ESD was persistent, requiring multiple EBD sessions.</p> <p>Conclusions</p> <p>Use of oral prednisolone administration may be an effective treatment strategy for reducing post-ESD esophageal stricture after complete circular ESD.</p
- …