854 research outputs found

    Fast convergence to equilibrium for long-chain polymer melts using a MD/continuum hybrid method

    Get PDF
    Effective and fast convergence toward an equilibrium state for long-chain polymer melts is realized by a hybrid method coupling molecular dynamics and the elastic continuum. The required simulation time to achieve the equilibrium state is reduced drastically compared with conventional equilibration methods. The polymers move on a wide range of the energy landscape due to large-scale fluctuation generated by the elastic continuum. A variety of chain structures is generated in the polymer melt which results in the fast convergence to the equilibrium state.Comment: 13 page

    Theory of multiwave mixing and decoherence control in qubit array system

    Full text link
    We develop a theory to analyze the decoherence effect in a charged qubit array system with photon echo signals in the multiwave mixing configuration. We present how the decoherence suppression effect by the {\it bang-bang} control with the π\pi pulses can be demonstrated in laboratory by using a bulk ensemble of exciton qubits and optical pulses whose pulse area is even smaller than π\pi. Analysis is made on the time-integated multiwave mixing signals diffracted into certain phase matching directions from a bulk ensemble. Depending on the pulse interval conditions, the cross over from the decoherence acceleration regime to the decoherence suppression regime, which is a peculiar feature of the coherent interaction between a qubit and the reservoir bosons, may be observed in the time-integated multiwave mixing signals in the realistic case including inhomogeneous broadening effect. Our analysis will successfully be applied to precise estimation of the reservoir parameters from experimental data of the direction resolved signal intensities obtained in the multiwave mixing technique.Comment: 19 pages, 11 figure

    Difference in radiocarbon ages of carbonized material from the inner and outer surfaces of pottery from a wetland archaeological site

    Get PDF
    AMS (Accelerator Mass Spectrometry) radiocarbon dates for eight potsherds from a single piece of pottery from a wetland archaeological site indicated that charred material from the inner pottery surfaces (5052 ± 12 BP; N = 5) is about 90 14C years older than that from the outer surfaces (4961 ± 22 BP; N = 7). We considered three possible causes of this difference: the old wood effect, reservoir effects, and diagenesis. We concluded that differences in the radiocarbon ages between materials from the inner and outer surfaces of the same pot were caused either by the freshwater reservoir effect or by diagenesis. Moreover, we found that the radiocarbon ages of carbonized material on outer surfaces (soot) of pottery from other wetland archaeological sites were the same as the ages of material on inner surfaces (charred food) of the same pot within error, suggesting absence of freshwater reservoir effect or diagenesis

    Appearance of classical Mixmaster Universe from the No-Boundary Quantum State

    Full text link
    We investigate the appearance of the classical anisotropic universe from the no-boundary quantum state according to the prescription proposed by Hartle, Hawking and Hertog. Our model is homogeneous, anisotropic, closed universes with a minimally coupled scalar field and cosmological constant. We found that there are an ensemble of classical Lorentzian histories with anisotropies and experience inflationary expansion at late time, and the probability of histories with anisotropies are lower than isotropic histories. Thus the no-boundary condition may be able to explain the emergence of our universe. If the classical late time histories are extended back, some become singular by the existence of initial anisotropies with large accelerations. However we do not find any chaotic behavior of anisotropies near the initial singularity.Comment: 14 pages, 14 figure

    Scale Factor in Double Parton Collisions and Parton Densities in Transverse Space

    Get PDF
    The scale factor σeff\sigma_{eff}, which characterizes double parton collisions in high energy hadron interactions, is a direct manifestation of the distribution of the interacting partons in transverse space, in such a way that different distributions give rise to different values of σeff\sigma_{eff} in different double parton collision processes. We work out the value of the scale factor in a few reactions of interest, in a correlated model of the multi-parton density of the proton recently proposed.Comment: 10 pages, 2 figure
    corecore