941 research outputs found

    Subsurface Defect Detection in Ceramic Materials Using Optical Gating Techniques

    Get PDF
    Components made from advanced ceramics materials, because of their thermomechanical and chemical properties, have several advantages over traditional steel parts, making them well suited for use in severe operating environments. In particular, silicon nitride (Si3N4) ceramics, because of their stiffness and resistance to corrosion, are being considered for use in rolling contact elements such as bearings and contact races. In addition, when combined with rare-earth oxide sintering aids such as yttria (Y2O3), silicon nitride ceramics have high-temperature strength which makes them excellent candidates for components such as rotors and blades in advanced turbine engines

    Quantum-inspired interferometry with chirped laser pulses

    Full text link
    We introduce and implement an interferometric technique based on chirped femtosecond laser pulses and nonlinear optics. The interference manifests as a high-visibility (> 85%) phase-insensitive dip in the intensity of an optical beam when the two interferometer arms are equal to within the coherence length of the light. This signature is unique in classical interferometry, but is a direct analogue to Hong-Ou-Mandel quantum interference. Our technique exhibits all the metrological advantages of the quantum interferometer, but with signals at least 10^7 times greater. In particular we demonstrate enhanced resolution, robustness against loss, and automatic dispersion cancellation. Our interferometer offers significant advantages over previous technologies, both quantum and classical, in precision time delay measurements and biomedical imaging.Comment: 6 pages, 4 figure

    Transcriptional Profiling of Non-Small Cell Lung Cancer Cells with Activating EGFR Somatic Mutations

    Get PDF
    Activating somatic mutations in epidermal growth factor receptor (EGFR) confer unique biologic features to non-small cell lung cancer (NSCLC) cells, but the transcriptional mediators of EGFR in this subgroup of NSCLC have not been fully elucidated.Here we used genetic and pharmacologic approaches to elucidate the transcriptomes of NSCLC cell lines. We transcriptionally profiled a panel of EGFR-mutant and -wild-type NSCLC cell lines cultured in the presence or absence of an EGFR tyrosine kinase inhibitor. Hierarchical analysis revealed that the cell lines segregated on the basis of EGFR mutational status (mutant versus wild-type), and expression signatures were identified by supervised analysis that distinguished the cell lines based on mutational status (wild-type versus mutant) and type of mutation (L858R versus Delta746-750). Using an EGFR mutation-specific expression signature as a probe, we mined the gene expression profiles of two independent cohorts of NSCLC patients and found the signature in a subset. EGFR tyrosine kinase inhibitor treatment regulated the expression of multiple genes, and pharmacologic inhibition of the protein products of two of them (PTGS2 and EphA2) inhibited anchorage-independent growth in EGFR-mutant NSCLC cells.We have elucidated genes not previously associated with EGFR-mutant NSCLC, two of which enhanced the clonogenicity of these cells, distinguishing these mediators from others previously shown to maintain cell survival. These findings have potential clinical relevance given the availability of pharmacologic tools to inhibit the protein products of these genes

    Calcified Plaques in Patients With Acute Coronary Syndromes

    Get PDF
    OBJECTIVES: This study conducted detailed analysis of calcified culprit plaques in patients with acute coronary syndromes (ACS). BACKGROUND: Calcified plaques as an underlying pathology in patients with ACS have not been systematically studied. METHODS: From 1,241 patients presenting with ACS who had undergone pre-intervention optical coherence tomography imaging, 157 (12.7%) patients were found to have a calcified plaque at the culprit lesion. Calcified plaque was defined as a plaque with superficial calcification at the culprit site without evidence of ruptured lipid plaque. RESULTS: Three distinct types were identified: eruptive calcified nodules, superficial calcific sheet, and calcified protrusion (prevalence of 25.5%, 67.4%, and 7.1%, respectively). Eruptive calcified nodules were frequently located in the right coronary arteries (44.4%), whereas superficial calcific sheet was most frequently found in the left anterior descending coronary arteries (68.4%) (p = 0.012). Calcification index (mean calcification arc × calcification length) was greatest in eruptive calcified nodules, followed by superficial calcific sheet, and smallest in calcified protrusion (median 3,284.9 [interquartile range (IQR): 2,113.3 to 5,385.3] vs. 1,644.3 [IQR: 1,012.4 to 3,058.7] vs. 472.5 [IQR: 176.7 to 865.2]; p < 0.001). The superficial calcific sheet group had the highest peak post-intervention creatine kinase values among the groups (eruptive calcified nodules vs. superficial calcific sheet vs. calcified protrusion: 241 [IQR: 116 to 612] IU/l vs. 834 [IQR: 141 to 3,394] IU/l vs. 745 [IQR: 69 to 1,984] IU/l; p = 0.032). CONCLUSIONS: Three distinct types of calcified culprit plaques are identified in patients with ACS. Superficial calcific sheet, which is frequently located in the left anterior descending coronary artery, is the most prevalent type and is also associated with greatest post-intervention myocardial damage. (Identification of Predictors for Coronary Plaque Erosion in Patients With Acute Coronary Syndrome; NCT03479723).status: publishe

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Effect of genetic testing for risk of type 2 diabetes mellitus on health behaviors and outcomes: study rationale, development and design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Type 2 diabetes is a prevalent chronic condition globally that results in extensive morbidity, decreased quality of life, and increased health services utilization. Lifestyle changes can prevent the development of diabetes, but require patient engagement. Genetic risk testing might represent a new tool to increase patients' motivation for lifestyle changes. Here we describe the rationale, development, and design of a randomized controlled trial (RCT) assessing the clinical and personal utility of incorporating type 2 diabetes genetic risk testing into comprehensive diabetes risk assessments performed in a primary care setting.</p> <p>Methods/Design</p> <p>Patients are recruited in the laboratory waiting areas of two primary care clinics and enrolled into one of three study arms. Those interested in genetic risk testing are randomized to receive <it>either </it>a standard risk assessment (SRA) for type 2 diabetes incorporating conventional risk factors plus upfront disclosure of the results of genetic risk testing ("SRA+G" arm), <it>or </it>the SRA alone ("SRA" arm). Participants not interested in genetic risk testing will not receive the test, but will receive SRA (forming a third, "no-test" arm). Risk counseling is provided by clinic staff (not study staff external to the clinic). Fasting plasma glucose, insulin levels, body mass index (BMI), and waist circumference are measured at baseline and 12 months, as are patients' self-reported behavioral and emotional responses to diabetes risk information. Primary outcomes are changes in insulin resistance and BMI after 12 months; secondary outcomes include changes in diet patterns, physical activity, waist circumference, and perceived risk of developing diabetes.</p> <p>Discussion</p> <p>The utility, feasibility, and efficacy of providing patients with genetic risk information for common chronic diseases in primary care remain unknown. The study described here will help to establish whether providing type 2 diabetes genetic risk information in a primary care setting can help improve patients' clinical outcomes, risk perceptions, and/or their engagement in healthy behavior change. In addition, study design features such as the use of existing clinic personnel for risk counseling could inform the future development and implementation of care models for the use of individual genetic risk information in primary care.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00849563">NCT00849563</a></p

    Noninvasive, In Vivo Assessment of Mouse Retinal Structure Using Optical Coherence Tomography

    Get PDF
    BACKGROUND: Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. METHODOLOGY/PRINCIPAL FINDINGS: We achieved to adapt a commercial 3(rd) generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber's congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. CONCLUSIONS/SIGNIFICANCE: We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies
    • …
    corecore